全文获取类型
收费全文 | 250篇 |
免费 | 4篇 |
国内免费 | 1篇 |
专业分类
化学 | 226篇 |
晶体学 | 1篇 |
数学 | 7篇 |
物理学 | 21篇 |
出版年
2023年 | 3篇 |
2022年 | 2篇 |
2021年 | 4篇 |
2020年 | 10篇 |
2019年 | 4篇 |
2018年 | 2篇 |
2016年 | 6篇 |
2015年 | 3篇 |
2014年 | 7篇 |
2013年 | 8篇 |
2012年 | 20篇 |
2011年 | 17篇 |
2010年 | 7篇 |
2009年 | 7篇 |
2008年 | 21篇 |
2007年 | 19篇 |
2006年 | 23篇 |
2005年 | 14篇 |
2004年 | 16篇 |
2003年 | 15篇 |
2002年 | 5篇 |
2001年 | 7篇 |
2000年 | 6篇 |
1999年 | 5篇 |
1998年 | 4篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1982年 | 3篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有255条查询结果,搜索用时 0 毫秒
231.
This paper addresses the observation of counterintuitive reactivity patterns of iron-oxo reagents, TMC(L)FeO(2+,1+); L=CH(3)CN, CF(3)CO(2) (-), N(3) (-), and SR(-), in O-transfer to phosphines versus H-abstraction from, for example, 1,4-cyclohexadiene. Experiments show that O-transfer reactivity correlates with the electrophilicity of the oxidant, but H-abstraction reactivity follows an opposite trend. DFT/B3 LYP calculations reveal that two-state reactivity (TSR) serves as a compelling rationale for these trends, whereby all reactions involve two adjacent spin-states of the iron(IV)-oxo species, triplet and quintet. The ground state triplet surface has high barriers, whereas the excited state quintet surface features lower ones. The barriers, on any single surface, are found to increase as the electrophilicity of TMC(L)FeO(2+,1+) decreases. Thus, the counterintuitive behavior of the H-abstraction reactions cannot be explained by considering the reactivity of only a single spin state but can be rationalized by a TSR model in which the reactions proceed on the two surfaces. Two TSR models are outlined: one is traditional involving a variable transmission coefficient for crossover from triplet to quintet, followed by quintet-state reactions; the other considers the net barrier as a blend of the triplet and quintet barriers. The blending coefficient (x), which estimates the triplet participation, increases as the quintet-triplet energy gap of the TMC(L)FeO(2+,1+) reagent increases, in the following order of L: CH(3)CN > CF(3)CO(2) (-) > N(3) (-) > SR(-). The calculated barriers predict the dichotomic experimental trends and the counterintuitive behavior of the H-abstraction series. The TSR approaches make a variety of testable predictions. 相似文献
232.
Shaik S Danovich D Silvi B Lauvergnat DL Hiberty PC 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(21):6358-6371
This paper deals with a central paradigm of chemistry, the electron-pair bond. Valence bond (VB) theory and electron-localization function (ELF) calculations of 21 single bonds demonstrate that along the two classical bond families of covalent and ionic bonds, there exists a class of charge-shift bonds (CS bonds) in which the fluctuation of the electron pair density plays a dominant role. In VB theory, CS bonding manifests by way of a large covalent-ionic resonance energy, RE(CS), and in ELF by a depleted basin population with large variances (fluctuations). CS bonding is shown to be a fundamental mechanism that is necessary to satisfy the equilibrium condition, namely the virial ratio of the kinetic and potential energy contributions to the bond energy. The paper defines the atomic propensity and territory for CS bonding: Atoms (fragments) that are prone to CS bonding are compact electronegative and/or lone-pair-rich species. As such, the territory of CS bonding transcends considerations of static charge distribution, and involves: a) homopolar bonds of heteroatoms with zero static ionicity, b) heteropolar sigma and pi bonds of the electronegative and/or electron-pair-rich elements among themselves and to other atoms (e.g., the higher metalloids, Si, Ge, Sn, etc), c) all hypercoordinate molecules. Several experimental manifestations of charge-shift bonding are discussed, such as depleted bonding density, the rarity of ionic chemistry of silicon in condensed phases, and the high barriers of halogen-transfer reactions as compared to hydrogen-transfers. 相似文献
233.
Sharma PK De Visser SP Ogliaro F Shaik S 《Journal of the American Chemical Society》2003,125(8):2291-2300
High-valent metal-oxo complexes catalyze C-H bond activation by oxygen insertion, with an efficiency that depends on the identity of the transition metal and its oxidation state. Our study uses density functional calculations and theoretical analysis to derive fundamental factors of catalytic activity, by comparison of a ruthenium-oxo catalyst with its iron-oxo analogue toward methane hydroxylation. The study focuses on the ruthenium analogue of the active species of the enzyme cytochrome P450, which is known to be among the most potent catalysts for C-H activation. The computed reaction pathways reveal one high-spin (HS) and two low-spin (LS) mechanisms, all nascent from the low-lying states of the ruthenium-oxo catalyst (Ogliaro, F.; de Visser, S. P.; Groves, J. T.; Shaik, S. Angew. Chem. Int. Ed. 2001, 40, 2874-2878). These mechanisms involve a bond activation phase, in which the transition states (TS's) appear as hydrogen abstraction species, followed by a C-O bond making phase, through a rebound of the methyl radical on the metal-hydroxo complex. However, while the HS mechanism has a significant rebound barrier, and hence a long lifetime of the radical intermediate, by contrast, the LS ones are effectively concerted with small barriers to rebound, if at all. Unlike the iron catalyst, the hydroxylation reaction for the ruthenium analogue is expected to follow largely a single-state reactivity on the LS surface, due to a very large rebound barrier of the HS process and to the more efficient spin crossover expected for ruthenium. As such, ruthenium-oxo catalysts (Groves, J. T.; Shalyaev, K.; Lee, J. In The Porphyrin Handbook; Biochemistry and Binding: Activation of Small Molecules, Vol. 4; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; pp 17-40) are expected to lead to more stereoselective hydroxylations compared with the corresponding iron-oxo reactions. It is reasoned that the ruthenium-oxo catalyst should have larger turnover numbers compared with the iron-oxo analogue, due to lesser production of suicidal side products that destroy the catalyst (Ortiz de Montellano, P. R.; Beilan, H. S.; Kunze, K. L.; Mico, B. A. J. Biol. Chem. 1981, 256, 4395-4399). The computations reveal also that the ruthenium complex is more electrophilic than its iron analogue, having lower hydrogen abstraction barriers. These reactivity features of the ruthenium-oxo system are analyzed and shown to originate from a key fundamental factor, namely, the strong 4d(Ru)-2p(O,N) overlaps, which produce high-lying pi(Ru-O), sigma(Ru-O), and sigma(Ru-N) orbitals and thereby to lead to a preference of ruthenium for higher-valent oxidation states with higher electrophilicity, for the effectively concerted LS hydroxylation mechanism, and for less suicidal complexes. As such, the ruthenium-oxo species is predicted to be a more robust catalyst than its iron-oxo analogue. 相似文献
234.
Moreau Y Chen H Derat E Hirao H Bolm C Shaik S 《The journal of physical chemistry. B》2007,111(34):10288-10299
We studied electronic structures and reactivity patterns of azo-compound I species (RN-Cpd I) by comparison to O-Cpd I of, e.g., cytochrome P450. The study shows that the RN-Cpd I species are capable of C=C aziridination and C-H amidation, in a two-state mechanism similar to that of O-Cpd I. However, unlike O-Cpd I, here the nitrogen substituent (R) exerts a major impact on structure and reactivity. Thus, it is demonstrated that Fe=NR bonds of RN-Cpd I will generally be substantially longer than Fe=O bonds; electron-withdrawing R groups will generate a very long Fe=N bond, whereas electron-releasing R groups should have the opposite effect and hence a shorter Fe=N bond. The R substituent controls also the reactivity of RN-Cpd I toward C=C and C-H bonds by exerting steric and electronic effects. Our analysis shows that an electron-releasing substituent will lower the barriers for both bond activation reactions, since the electronic factor makes the reactions highly exothermic, while an electron-withdrawing one should raise both barriers. The steric bulk of the substituent is predicted to inhibit more strongly the aziridination reactions. It is predicted that electron-releasing substituents with small bulk will create powerful aziridination reagents, whereas electron-withdrawing substituents like MeSO(2) will prefer C-H bond activation with preference that increases with steric bulk. Finally, the study predicts (i) that the reactions of RN-Cpd I will be less stereospecific than those of O-Cpd I and (ii) that aziridination will be more stereoselective than amidation. 相似文献
235.
Park Y Whitaker RD Nap RJ Paulsen JL Mathiyazhagan V Doerrer LH Song YQ Hürlimann MD Szleifer I Wong JY 《Langmuir : the ACS journal of surfaces and colloids》2012,28(15):6246-6255
The detection of superparamagnetic nanoparticles using NMR logging has the potential to provide enhanced contrast in oil reservoir rock formations. The stability of the nanoparticles is critical because the NMR relaxivity (R(2) ≡ 1/T(2)) is dependent on the particle size. Here we use a molecular theory to predict and validate experimentally the stability of citric acid-coated/PEGylated iron oxide nanoparticles under different pH conditions (pH 5, 7, 9, 11). The predicted value for the critical surface coverage required to produce a steric barrier of 5k(B)T for PEGylated nanoparticles (MW 2000) was 0.078 nm(-2), which is less than the experimental value of 0.143 nm(-2), implying that the nanoparticles should be stable at all pH values. Dynamic light scattering (DLS) measurements showed that the effective diameter did not increase at pH 7 or 9 after 30 days but increased at pH 11. The shifts in NMR relaxivity (from R(2) data) at 2 MHz agreed well with the changes in hydrodynamic diameter obtained from DLS data, indicating that the aggregation behavior of the nanoparticles can be easily and quantitatively detected by NMR. The unexpected aggregation at pH 11 is due to the desorption of the surface coating (citric acid or PEG) from the nanoparticle surface not accounted for in the theory. This study shows that the stability of the nanoparticles can be predicted by the theory and detected by NMR quantitatively, which suggests the nanoparticles to be a possible oil-field nanosensor. 相似文献
236.
Usharani D Zazza C Lai W Chourasia M Waskell L Shaik S 《Journal of the American Chemical Society》2012,134(9):4053-4056
The intriguing deactivation of the cytochrome P450 (CYP) 2B4 enzyme induced by mutation of a single residue, Phe429 to His, is explored by quantum mechanical/molecular mechanical calculations of the O-OH bond activation of the (Fe(3+)OOH)(-) intermediate. It is found that the F429H mutant of CYP 2B4 undergoes homolytic instead of heterolytic O-OH bond cleavage. Thus, the mutant acquires the following characteristics of a heme oxygenase enzyme: (a) donation by His429 of an additional NH---S H-bond to the cysteine ligand combined with the presence of the substrate retards the heterolytic cleavage and gives rise to homolytic O-OH cleavage, and (b) the Thr302/water cluster orients nascent OH(?) and ensures efficient meso hydroxylation. 相似文献
237.
Meir R Kozuch S Uhe A Shaik S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(27):7623-7631
The new approach for palladium‐catalyzed cross‐coupling of two non‐activated aromatic compounds (D. R. Stuart, K. Fagnou, Science 2007 , 316, 1172) was studied theoretically. The energetic span model (S. Kozuch, S. Shaik, Acc. Chem. Res. 2011 , 44, 101, and references therein) was employed to analyze the kinetic behavior of the catalytic cycle. The computed energy profile, combined with the energetic span model, accounts for the experimental selectivity, which favors the hetero‐coupling of benzene with indole. This selectivity is driven by a fine balance of the entropic contributions and the high ratio of concentrations used for benzene over indole. This analysis may allow future theoretical predictions of how different aromatic compounds can be effectively coupled. 相似文献
238.
Horst Kppel Lorenz S. Cederbaum Wolfgang Domcke Sason S. Shaik 《Angewandte Chemie (International ed. in English)》1983,22(3):210-224
The various electronic states in which molecules can exist are often considered to be independent. In this article we turn our attention to the limitations of this assumption, namely the interaction between different electronic states through the nuclear motion. This interaction can have several important consequences, two of which are discussed in some detail. One is a distortion of the molecular framework, leading to a lowering of the symmetry of a molecule in excited or ionic states compared to the neutral ground state. General aspects of this symmetry lowering are outlined and interpreted with the aid of typical examples. The other consequence considered is the ability of the nuclei to “jump” between different molecular potential energy surfaces (non-Born-Oppenheimer effects). The nature of this behavior is analyzed and it is argued that the “jumping” can be very fast and efficient, dominating completely the nuclear motion. To exemplify our general ideas we refer to the photoelectron spectra of ethylene and related compounds and demonstrate that they are governed by strong non-Born-Oppenheimer effects. It emerges that the Franck-Condon principle fails in the analysis of their vibronic structure. 相似文献
239.
240.
Controlling the selectivity of a chemical reaction is a Holy Grail in chemistry. This paper reports theoretical results of unprecedented effects induced by moderately strong electric fields on the selectivity of two competing nonpolar bond activation processes, C-H hydroxylation vs C=C epoxidation, promoted by an active species that is common to heme-enzymes and to metallo-organic catalysts. The molecular system by itself shows no selectivity whatsoever. However, the presence of an electric field induces absolute selectivity that can be controlled at will. Thus, the choice of the orientation and direction of the field vis-à-vis the molecular axes drives the reaction in the direction of complete C-H hydroxylation or complete C=C epoxidation. 相似文献