首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   4篇
  国内免费   1篇
化学   226篇
晶体学   1篇
数学   7篇
物理学   21篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   10篇
  2019年   4篇
  2018年   2篇
  2016年   6篇
  2015年   3篇
  2014年   7篇
  2013年   8篇
  2012年   20篇
  2011年   17篇
  2010年   7篇
  2009年   7篇
  2008年   21篇
  2007年   19篇
  2006年   23篇
  2005年   14篇
  2004年   16篇
  2003年   15篇
  2002年   5篇
  2001年   7篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
171.
It's in the bond : The cleavage of C? H bonds by two related oxoiron(IV) complexes shows a range of kinetic isotope effect (KIE) values that exhibit an unusual dependence on the C? H bond strength. Large nonclassical KIEs are observed for bond strengths below 93 kcal mol?1, while semiclassical values are found above this value (see graph, DHA=9,10‐dihydroanthracene). This nonintuitive behavior can be rationalized by invoking a two‐state reactivity model.

  相似文献   

172.
The intramolecular gas‐phase reactivity of four oxoiron(IV) complexes supported by tetradentate N4 ligands ( L ) has been studied by means of tandem mass spectrometry measurements in which the gas‐phase ions [FeIV(O)( L )(OTf)]+ (OTf=trifluoromethanesulfonate) and [FeIV(O)( L )]2+ were isolated and then allowed to fragment by collision‐induced decay (CID). CID fragmentation of cations derived from oxoiron(IV) complexes of 1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane (tmc) and N,N′‐bis(2‐pyridylmethyl)‐1,5‐diazacyclooctane ( L 8Py2) afforded the same predominant products irrespective of whether they were hexacoordinate or pentacoordinate. These products resulted from the loss of water by dehydrogenation of ethylene or propylene linkers on the tetradentate ligand. In contrast, CID fragmentation of ions derived from oxoiron(IV) complexes of linear tetradentate ligands N,N′‐bis(2‐pyridylmethyl)‐1,2‐diaminoethane (bpmen) and N,N′‐bis(2‐pyridylmethyl)‐1,3‐diaminopropane (bpmpn) showed predominant oxidative N‐dealkylation for the hexacoordinate [FeIV(O)( L )(OTf)]+ cations and predominant dehydrogenation of the diaminoethane/propane backbone for the pentacoordinate [FeIV(O)( L )]2+ cations. DFT calculations on [FeIV(O)(bpmen)] ions showed that the experimentally observed preference for oxidative N‐dealkylation versus dehydrogenation of the diaminoethane linker for the hexa‐ and pentacoordinate ions, respectively, is dictated by the proximity of the target C? H bond to the oxoiron(IV) moiety and the reactive spin state. Therefore, there must be a difference in ligand topology between the two ions. More importantly, despite the constraints on the geometries of the TS that prohibit the usual upright σ trajectory and prevent optimal σCH–σ* overlap, all the reactions still proceed preferentially on the quintet (S=2) state surface, which increases the number of exchange interactions in the d block of iron and leads thereby to exchange enhanced reactivity (EER). As such, EER is responsible for the dominance of the S=2 reactions for both hexa‐ and pentacoordinate complexes.  相似文献   
173.
What is the nature of the C? C bond? Valence bond and electron density computations of 16 C? C bonds show two families of bonds that flesh out as a phase diagram. One family, involving ethane, cyclopropane and so forth, is typified by covalent C? C bonding wherein covalent spin‐pairing accounts for most of the bond energy. The second family includes the inverted bridgehead bonds of small propellanes, where the bond is neither covalent nor ionic, but owes its existence to the resonance stabilization between the respective structures; hence a charge‐shift (CS) bond. The dual family also emerges from calculated and experimental electron density properties. Covalent C? C bonds are characterized by negative Laplacians of the density, whereas CS‐bonds display small or positive Laplacians. The positive Laplacian defines a region suffering from neighbouring repulsive interactions, which is precisely the case in the inverted bonding region. Such regions are rich in kinetic energy, and indeed the energy‐density analysis reveals that CS‐bonds are richer in kinetic energy than the covalent C? C bonds. The large covalent–ionic resonance energy is precisely the mechanism that lowers the kinetic energy in the bonding region and restores equilibrium bonding. Thus, different degrees of repulsive strain create two bonding families of the same chemical bond made from a single atomic constituent. It is further shown that the idea of repulsive strain is portable and can predict the properties of propellanes of various sizes and different wing substituents. Experimentally (M. Messerschmidt, S. Scheins, L. Bruberth, M. Patzel, G. Szeimies, C. Paulman, P. Luger, Angew. Chem. 2005 , 117, 3993–3997; Angew. Chem. Int. Ed. 2005 , 44, 3925–3928), the C? C bond families are beautifully represented in [1.1.1]propellane, where the inverted C? C is a CS‐bond, while the wings are made from covalent C? C bonds. What other manifestations can we expect from CS‐bonds? Answers from experiment have the potential of recharting the mental map of chemical bonding.  相似文献   
174.
In contrast to organic reactions, which can almost always be described in terms of a single multiplicity, in organometallic systems, quite often more than one state may be involved. The phenomenon of two states of different multiplicities that determine the minimum-energy pathway of a reaction is classified as two-state reactivity (TSR). As an example, the ion/molecule reactions of ‘bare’ transition-metal-monoxide cations with dihydrogen and hydrocarbons have been analyzed in terms of the corresponding potential-energy hypersurfaces. It turns out that, besides classical factors, such as the barrier heights, the spin-orbit coupling factor is essential, since curve crossing between the high- and low-spin states constitutes a distinct mechanistic step along the reaction coordinates. Thus, TSR may evolve as a new paradigm for describing the chemistry of coordinatively unsaturated transition-metal complexes. This concept may contribute to the understanding of organometallic chemistry in general and for the development of oxidation catalysts in particular.  相似文献   
175.
We show the existence of Lorentz invariant Berry phases generated, in the Stueckelberg–Horwitz–Piron manifestly covariant quantum theory (SHP), by a perturbed four dimensional harmonic oscillator. These phases are associated with a fractional perturbation of the azimuthal symmetry of the oscillator. They are computed numerically by using time independent perturbation theory and the definition of the Berry phase generalized to the framework of SHP relativistic quantum theory.  相似文献   
176.
In view of recent reports of high reactivity of ferric-superoxide species in heme and nonheme systems (Morokuma et al. J. Am. Chem. Soc. 2010, 132, 11993-12005; Que et al. Inorg. Chem. 2010, 49, 3618-3628; Nam et al. J. Am. Chem. Soc. 2010, 132, 5958-5959; J. Am. Chem. Soc. 2010, 132, 10668-10670), we use herein combined quantum mechanics/molecular mechanics (QM/MM) methods to explore the potential reactivity of P450(cam) ferric-superoxide toward hydroxylation, epoxidation, and sulfoxidation. The calculations demonstrate that P450 ferric-superoxide is a sluggish oxidant compared with the high-valent oxoiron porphyrin cation-radical species. As such, unlike heme enzymes with a histidine axial ligand, the P450 superoxo species does not function as an oxidant in P450(cam). The origin of this different behavior of the superoxo species of P450 vis-a?-vis other heme enzymes like tryptophan 2, 3-dioxygenase (TDO) is traced to the ability of the latter superoxo species to make a stronger FeOO-X (X = H,C) bond and to stabilize the corresponding bond-activation transition states by resonance with charge-transfer configurations. By contrast, the negatively charged thiolate ligand in the P450 superoxo species minimizes the mixing of charge transfer configurations in the transition state and raises the reaction barrier. However, as we demonstrate, an external electric field oriented along the Fe-O axis with a direction pointing from Fe toward O will quench Cpd I formation by slowing the reduction of ferric-superoxide and will simultaneously lower the barriers for oxidation by the latter species, thereby enabling observation of superoxo chemistry in P450. Other options for nascent superoxo reactivity in P450 are discussed.  相似文献   
177.
We report spatiotemporal chaos in the Oregonator model of the Belousov-Zhabotinsky reaction. Spatiotemporal chaos spontaneously develops in a regime, where the underlying local dynamics show stable limit cycle oscillations (diffusion-induced turbulence). We show that spatiotemporal chaos can be suppressed by a unidirectional flow in the system. With increasing flow velocity, we observe a transition scenario from spatiotemporal chaos via a regime of travelling waves to a stationary steady state. At large flow velocities, we recover the known regime of flow distributed oscillations.  相似文献   
178.
179.
    
Self‐assembly of nanoparticles (NPs) into nonclose‐packed (ncp), semi‐two‐dimensional (2D) arrays is of interest in a variety of applications. Of special interest are photochemically active surfactant‐like fullerene derivatives [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). The study presented here characterizes the morphology and structure of patterns formed by a mixture of PCBM NP and an amphiphilic block‐copolymer tethered at the water–air interface (a surface brush) as a function of the concentration of poly(ethylene oxide) (PEO) dissolved in the liquid subphase. Theoretical modeling of the system shows that the concentration of PEO in the subphase mediates the dimensions of the surface brush and at high PEO concentrations induces a collapse of the brush at the solution–air interface. The state of the surface brush is suggested to tune the semi‐2D patterns observed in the experiments via lateral depletion interactions and, in particular, induce lateral phase separation of the PCBM‐block copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   
180.
    
\"Give us insight, not numbers\" was Coulson's admonition to theoretical chemists. This Review shows that the valence bond (VB)-model provides insights and some good numbers for one of the fundamental reactions in nature, the hydrogen-atom transfer (HAT). The VB model is applied to over 50 reactions from the simplest H + H(2) process, to P450 hydroxylations and H-transfers among closed-shell molecules; for each system the barriers are estimated from raw data. The model creates a bridge to the Marcus equation and shows that H-atom abstraction by a closed-shell molecule requires a higher barrier owing to the additional promotion energy needed to prepare the abstractor for H-abstraction. Under certain conditions, a closed-shell abstractor can bypass this penalty through a proton-coupled electron transfer (PCET) mechanism. The VB model links the HAT and PCET mechanisms conceptually and shows the consequences that this linking has for H-abstraction reactivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号