首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   13篇
  国内免费   15篇
化学   140篇
力学   3篇
数学   57篇
物理学   48篇
  2021年   4篇
  2020年   6篇
  2019年   5篇
  2018年   7篇
  2017年   2篇
  2016年   7篇
  2015年   5篇
  2014年   3篇
  2013年   6篇
  2012年   13篇
  2011年   13篇
  2010年   5篇
  2009年   2篇
  2008年   10篇
  2007年   9篇
  2006年   11篇
  2005年   14篇
  2004年   6篇
  2003年   5篇
  2002年   11篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1997年   3篇
  1996年   7篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   4篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   1篇
  1986年   6篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1969年   2篇
  1937年   1篇
  1918年   1篇
排序方式: 共有248条查询结果,搜索用时 15 毫秒
81.
82.
83.
Porous shape-memory alloys are usually brittle due to the presence of various nickel-titanium intermetallic compounds that are produced in the course of most commonly used synthesizing techniques. We consider here a porous NiTi shape-memory alloy (SMA), synthesized by spark-plasma sintering, that is ductile and displays full shape-memory effects over the entire appropriate range of strains. The porosity however is only 12% but the basic synthesizing technique has potential for producing shape-memory alloys with greater porosity that still are expected to display superelasticity and shape-memory effects. The current material has been characterized experimentally using quasi-static and dynamic tests at various initial temperatures, mostly within the superelastic strain range, but also into the plastic deformation regime of the stress-induced martensite phase. To obtain a relatively constant strain rate in the high strain-rate tests, a novel pulse-shaping technique is introduced. The results of the quasi-static experiments are compared with the predictions by a model that can be used to calculate the stress-strain response of porous NiTi shape-memory alloys during the austenite-to-martensite and reverse phase transformations in uniaxial quasi-static loading and unloading at constant temperatures. In the austenite-to-martensite transformation, the porous shape-memory alloy is modeled as a three-phase composite with the parent phase (austenite) as the matrix and the product phase (martensite) and the voids as the embedded inclusions, reversing the roles of austenite and martensite during the reverse transformation from fully martensite to fully austenite phase. The criterion of the stress-induced martensitic transformation and its reversal is based on equilibrium thermodynamics, balancing the thermodynamic driving force for the phase transformation, associated with the reduction of Gibbs’ free energy, with the resistive force corresponding to the required energy to create new interface surfaces and to overcome the energy barriers posed by various microstructural obstacles. The change in Gibbs’ free energy that produces the driving thermodynamic force for phase transformation is assumed to be due to the reduction of mechanical potential energy corresponding to the applied stress, and the reduction of the chemical energy corresponding to the imposed temperature. The energy required to overcome the resistance imposed by various nano- and subnano-scale defects and like barriers, is modeled empirically, involving three constitutive constants that are then fixed based on the experimental data. Reasonably good correlation is obtained between the experimental and model predictions.  相似文献   
84.
Several acellular assays are routinely used to measure oxidative stress elicited by engineered nanomaterials (ENMs), yet little comparative evaluations of such methods exist. This study compares for the first time the performance of the dichlorofluorescein (DCFH) assay which measures reactive oxygen species (ROS) generation, to that of the ferric-reducing ability of serum (FRAS) assay, which measures biological oxidant damage in serum. A diverse set of 28 commercially important and extensively characterized ENMs were tested on both the assays. Intracellular oxidative stress was also assessed on a representative subset of seven ENMs in THP-1 (phorbol 12-myristate 13-acetate matured human monocytes) cells. Associations between assay responses and ENM physicochemical properties were assessed via correlation and regression analysis. DCFH correlated strongly with FRAS after dose normalization for mass (R 2 = 0.78) and surface area (R 2 = 0.68). Only 10/28 ENMs were positive in DCFH versus 21/28 in FRAS. Both assays were strongly associated with specific surface area and transition metal content. Qualitatively, a similar response ranking was observed for acellular FRAS and intracellular reduced:oxidized glutathione ratio (GSH:GSSG) in cells. Quantitatively, weak correlation was found between intracellular GSSG and FRAS or DCFH (R 2 < 0.25) even after calculating effective dose to cells. The FRAS assay was more sensitive than DCFH, especially for ENMs with low to moderate oxidative damage potential, and may serve as a more biologically relevant substitute for acellular ROS measurements of ENMs. Further in vitro and in vivo validations of FRAS against other toxicological endpoints with larger datasets are recommended.  相似文献   
85.
86.
The products of bromination of triethylamine have been reinvestigated and shown to be N.N-diethyl di- and tribromoacetamides. The rotational barrier for the dibromoamide was measured, Ea = 40 kJ mol?1 and found to be considerably lower than that of N,N-diethylacetamide.  相似文献   
87.
In contrast to the high yield formation of cucurbit[n]uril (CB[n]) from a 1:2 ratio of glycoluril to formaldehyde, the condensation of glycoluril with less than 2 equiv of formaldehyde delivers a reaction mixture that contains glycoluril oligomers (2-6) and CB[n] compounds that lack one or more methylene bridges known as nor-seco-cucurbit[n]urils (ns-CB[n]). In this paper we report the chromatographic purification of C-shaped glycoluril oligomers (dimer-hexamer), their characterization in solution, and their X-ray crystal structures. Quite interestingly, despite being acyclic glycoluril pentamer 5 and hexamer 6 retain the ability to bind to guests typical of CB[6] but are also able to expand their cavity to accommodate larger guests like cationic adamantane derivatives. We performed product resubmission experiments with glycoluril oligomers 2-6 and found preferences for the formation of specific ring sizes during CB[n] formation. A comprehensive mechanistic scheme is proposed that accounts for the observed formation of 2-6 and ns-CB[n]. Overall, the experiments establish that a step-growth cyclo-oligomerization process operates during CB[n] formation.  相似文献   
88.
Prostate cancer cells produce high (microgram to milligram/milliliter) levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the extracellular fluid surrounding prostate cancers but is found at 1,000- to 10,000-fold lower concentrations in the circulation, where it is inactivated due to binding to abundant serum protease inhibitors. The exclusive presence of high levels of active PSA within prostate cancer sites makes PSA an attractive candidate for targeted imaging and therapeutics. A synthetic approach based on a peptide substrate identified first peptide aldehyde and then boronic acid inhibitors of PSA. The best of these had the sequence Cbz-Ser-Ser-Lys-Leu-(boro)Leu, with a Ki for PSA of 65 nM. The inhibitor had a 60-fold higher Ki for chymotrypsin. A validated model of PSA's catalytic site confirmed the critical interactions between the inhibitor and residues within the PSA enzyme.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号