首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   786篇
  免费   24篇
化学   637篇
晶体学   2篇
力学   15篇
数学   43篇
物理学   113篇
  2021年   5篇
  2020年   4篇
  2019年   11篇
  2018年   7篇
  2017年   8篇
  2016年   6篇
  2015年   17篇
  2014年   14篇
  2013年   19篇
  2012年   42篇
  2011年   65篇
  2010年   27篇
  2009年   18篇
  2008年   48篇
  2007年   46篇
  2006年   39篇
  2005年   37篇
  2004年   44篇
  2003年   38篇
  2002年   27篇
  2001年   21篇
  2000年   16篇
  1998年   19篇
  1997年   12篇
  1996年   24篇
  1995年   21篇
  1994年   16篇
  1993年   13篇
  1992年   12篇
  1991年   12篇
  1990年   13篇
  1989年   6篇
  1988年   10篇
  1987年   11篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   10篇
  1981年   5篇
  1980年   5篇
  1978年   4篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1968年   3篇
  1960年   2篇
  1957年   2篇
  1924年   2篇
排序方式: 共有810条查询结果,搜索用时 46 毫秒
21.
The Suzuki coupling of aryl chlorides in TBAB-water mixtures   总被引:1,自引:0,他引:1  
Palladium acetate in a mixture of TBAB and water can be used as an effective catalyst for the Suzuki coupling of deactivated aryl chloride substrates.  相似文献   
22.
The syntheses of two tetravalent uranium alkoxide-carbene complexes are reported, [UIL3], and [UL4] where L = OCMe2CH2[1-C(NCHCHNiPr)]. The latter shows dynamic behaviour of the alkoxycarbene ligands in solution at room temperature, and the crystal structure of [UL4] shows that one carbene group remains uncoordinated. The unbound N-heterocyclic carbene group is trapped by a range of reagents such as 16-valence-electron metal carbonyl fragments and BH3 moieties, forming, for example, [UL3(mu-L)W(CO)5], [UL2(mu-L)2Mo(CO)4], and [UL(n)(L-BH3)(4-n)] (n = 1-4), demonstrating the potential for these hemilabile electropositive metal-carbene complexes to participate in the bifunctional activation of small molecules.  相似文献   
23.
The polyamino ligand 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane (1) has been used to synthesise two new ligands by Schiff-base condensation with methyl sodium acetyl phosphonate to give ligand L and methyl sodium 4-methoxybenzoyl phosphonate to give ligand L1 in the presence of lanthanide ion as templating agent to form the complexes [Ln(L)] and [Ln(L1)](Ln = Y, La, Gd, Yb). Both ligands L and L1 have nine donor atoms comprising three amine and three imine N-donors and three phosphonate O-donors and form Ln(III) complexes in which the three pendant arms of the ligands wrap around the nine-coordinate Ln(III) centres. Complexes with Y(III), La(III), Gd(III) and Yb(III) have been synthesised and the complexes [Y(L)], [Gd(L)] and [Gd(L1)] have been structurally characterised. In all the complexes the coordination polyhedron about the lanthanide centre is slightly distorted tricapped trigonal prismatic with the two triangular faces of the prism formed by the macrocyclic N-donors and the phosphonate O-donors. Interestingly, given the three chiral phosphorus centres present in [Ln(L)] and [Ln(L1)] complexes, the three crystal structures reported show the presence of only one diastereomer of the four possible. 1H, 13C and 31P NMR spectroscopic studies on diamagnetic [Y(L)] and [La(L)] and on paramagnetic [Yb(L)] complexes indicate the presence in solution of all the four different diastereomers in varying proportions. The stability of complexes [Y(L)] and [Y(L1)] in D2O in both neutral and acidic media, and the relaxivity of the Gd(III) complexes, have also been investigated.  相似文献   
24.
The binding properties of 1,4,7-triazacyclononane ([9]aneN3) to metal cations can be adapted through sequential functionalisation of the secondary amines with aminoethyl or aminopropyl pendant arms to generate ligands with increasing numbers of donor atoms. The new amino functionalised pendant arm derivative of 1,4,7-triazacyclononane ([9]aneN3), L1, has been synthesised and its salt [H2L1]Cl2 characterised by X-ray diffraction. The protonation constants of the ligands L1-L4 having one, two or three aminoethyl or three aminopropyl pendant arms, respectively, on the [9]aneN3 framework, and the thermodynamic stabilities of their mononuclear complexes with CuII and ZnII have been investigated by potentiometric measurements in aqueous solutions. In order to discern the protonation sites of ligands L1-L4, 1H NMR spectroscopic studies were performed in D2O as a function of pH. While the stability constants of the CuII complexes increase on going from L1 to L2 and then decrease on going from L2 to L3 and L4, those for ZnII complexes increase from L1 to L3 and then decrease for L4. The X-ray crystal structures of the complexes [Cu(L1)(Br)]Br, [Zn(L1)(NO3)]NO3, [Cu(L2)](ClO4)2, [Ni(L2)(MeCN)](BF4)2, [Zn(L4)](BF4)2.MeCN and [Mn(L4)](NO3)2.1/2H2O have been determined. In both [Cu(L1)(Br)]Br and [Zn(L1)(NO3)]NO3 the metal ion is five co-ordinate and bound by four N-donors of the macrocyclic ligand and by one of the two counter-anions. The crystal structures of [Cu(L2)](ClO4)2 and [Ni(L2)(MeCN)](BF4)2 show the metal centre in slightly distorted square-based pyramidal and octahedral geometry, respectively, with a MeCN molecule completing the co-ordination sphere around NiII in the latter. In both [Zn(L4)](BF4)2.MeCN and [Mn(L4)](NO3)2.1/2H2O the metal ion is bound by all six N-donors of the macrocyclic ligand in a distorted octahedral geometry. Interestingly, and in agreement with the solution studies and with the marked preference of CuII to assume a square-based pyramidal geometry with these types of ligands, the reaction of L4 with one equivalent of Cu(BF4)2.4H2O in MeOH at room temperature yields a square-based pyramidal five co-ordinate CuII complex [Cu(L6)](BF4)2 where one of the three propylamino pendant arms of the starting ligand has been cleaved to give L6.  相似文献   
25.
The coordination chemistry of the new pyridine-based, N2S2-donating 12-membered macrocycle 2,8-dithia-5-aza-2,6-pyridinophane (L1) towards Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) has been investigated both in aqueous solution and in the solid state. The protonation constants for L1 and stability constants with the aforementioned metal ions have been determined potentiometrically and compared with those of ligand L2, which contains a N-aminopropyl side arm. The measured values show that Hg(II) in water has the highest affinity for both ligands followed by Cu(II), Cd(II), Pb(II), and Zn(II). For each metal ion considered, 1:1 complexes with L1 have also been isolated in the solid state, those of Cu(II) and Zn(II) having also been characterised by X-ray crystallography. In both complexes L1 adopts a folded conformation and the coordination environments around the two metal centres are very similar: four positions of a distorted octahedral coordination sphere are occupied by the donor atoms of the macrocyclic ligand, and the two mutually cis-positions unoccupied by L1 accommodate monodentate NO3- ligands. The macrocycle L1 has then been functionalised with different fluorogenic subunits. In particular, the N-dansylamidopropyl (L3), N-(9-anthracenyl)methyl (L4), and N-(8-hydroxy-2-quinolinyl)methyl (L5) pendant arm derivatives of L1 have been synthesised and their optical response to the above mentioned metal ions investigated in MeCN/H2O (4:1 v/v) solutions.  相似文献   
26.
In the title compounds, [N‐(phenyl{2‐[N‐(S)‐(2‐picolyl)­prolyl­amino]­phenyl}methyl­ene)‐(S)‐phenyl­alaninato]­nickel(II), [Ni(C33H30N4O3)], (I), [N‐(phenyl{2‐[N‐(S)‐(3‐picolyl)­prolyl­amino]­phenyl}methyl­ene)‐(S)‐phenyl­alaninato]­nickel(II) hemihydrate, [Ni(C33H30N4O3)]·0.5H2O, (II), and [N‐({2‐[N‐(S)‐ethyl­prolyl­amino]­phenyl}phenyl­methyl­ene)‐(S)‐phenyl­ala­nin­ato]­nickel(II), [Ni(C29H29N3O3)], (III), the NiII centres have approximate square‐planar coordination geometries from N3O donor sets. The picolyl N atoms in (I) and (II) are too remote from the metal centres to interact significantly, but the metal coordination geometries experience tetrahedral distortion and/or displacement of the metal centre from the N3O plane. These are linked to conformational differences between the ligands of the symmetry‐independent complexes (Z′ = 2), which in turn are related to molecular packing. In (III), where a less sterically demanding ethyl group replaces the picolyl substituents, there are none of the distortions or displacements seen in (I) and (II).  相似文献   
27.
The technique of proton transfer reaction mass spectrometry (PTR-MS) couples a proton transfer reagent, usually H3O+, with a drift tube and mass spectrometer to determine concentrations of volatile organic compounds. Here we describe a first attempt to use chemical ionization (CI) reagents other than proton transfer species inside a PTR-MS instrument. The ability to switch to other types of CI reagents provides an extra dimension to the technique. This capability is demonstrated by focusing on the ability to distinguish several isobaric aldehydes and ketones, including the atmospherically important molecules methacrolein and methyl vinyl ketone. Two CI reagents were selected, H3O+ and NO+, both being cleanly generated in a low intensity radioactive source prior to injection into the drift tube. By recording spectra with both of these reagents, the contributions from different isobaric molecules can be separated by virtue of their unique spectrometric 'fingerprints'. The work demonstrates that this form of instrumentation is not restricted to proton transfer reagents and is the basis of a more general technique, chemical ionization reaction mass spectrometry (CIRMS).  相似文献   
28.
We use molecular dynamics simulations to investigate the structure of the hydrated Na-Nafion membranes. The membrane is "prepared" by starting with the Nafion chains placed on a cylinder having the water inside it. Minimizing the energy of the system leads to a filamentary hydrophilic domain whose structure depends on the degree of hydration. At 5 wt % water the system does not have enough water molecules to solvate all the ions that could be formed by the dissociation of the -SO3Na groups. As a result, the -SO3Na groups aggregate with the water to form very small droplets that do not join into a continuous phase. The size of the droplets is between 5 and 8 A. As the amount of water present in the membrane is increased, the membrane swells, and SO3Na has an increasing tendency to dissociate into ions. Furthermore, a transition to a percolating hydrophilic network is observed. In the percolating structure, the water forms irregular curvilinear channels branching in all directions. The typical dimension of the cross section of these channels is about 10-20 A. Calculated neutron scattering from the simulated system is in qualitative agreement with experiment. In all simulations, the pendant sulfonated perfluorovinyl side chains of the Nafion hug the walls of the hydrophilic channel, while the sulfonate groups point toward the center of the hydrophilic phase. The expulsion of the side chains from the hydrophilic domain is favored because it allows better interaction between the water molecules. We have also examined the probability of finding water molecules around the Na+ and the -SO3(-) ions as well as the probability of finding other water molecules next to a given water molecule. These probabilities are much broader than those found in bulk water or for one ion in bulk water (calculated with the potentials used in the present simulation). This is due to the highly inhomogeneous nature of the material contained in the small hydrophilic pores.  相似文献   
29.
Two iminosugars have been designed and synthesized as potential inhibitors of UDP-Galf transferase, an enzyme involved in Mycobacterium tuberculosis cell wall biosynthesis. The design is based on a proposed model of the transition state for the transferase reaction. One of the two racemic compounds is the first reported inhibitor of the target enzyme from M. smegmatis.  相似文献   
30.
The title complex, [NiCl(C12H16N3O2)2(H2O)]NO3·2CH4O·H2O, was obtained from a methano­lic solution of Ni(NO3)2·6H2O, 2‐pyridyl nitro­nyl nitro­xide (2‐NITpy) and (NEt4)2[CoCl4]. The equatorial coordination sites of the octahedral NiII centre are occupied by two chelating radical ligands, with the axial positions occupied by the Cl? and water ligands. The H2O—Ni—Cl axis of the complex lies along a crystallographic twofold axis, so that only half the cation is present in the asymmetric unit. The Ni—Cl bond length [2.3614 (17) Å] is significantly shorter than distances typical of octahedral NiII centres [2.441 (5) Å]. However, with only one nitrate anion per formula unit, the oxidation state of the metal must be assigned as NiII. The 2‐NITpy ligands bend away from the equatorial plane, forming a hydro­phobic region around the Cl atoms. Conversely, the ligated water mol­ecule forms moderately strong hydrogen bonds with the disordered methanol solvent mol­ecules, which in turn form interactions with the water of crystallization and the disordered nitrate anion. These interactions combine to give hydro­philic regions throughout the crystal structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号