A new kind of organic-inorganic hybrid polymer, poly(tetraphenyl)silole siloxane, was invented and synthesized for realization of its unique charge trap properties. The organic portions consisting of (tetraphenyl)silole rings were responsible for negative charge trapping, while the Si-O-Si inorganic linkages provided the intrachain energy barrier for controlling electron transport. The polysilole siloxane dielectric thin films were fabricated by spin-coating and curing of the polymers, followed by characterization with spectroscopic ellipsometry (SE), near edge X-ray absorption fine structure spectroscopy (NEXAFS), and photoemission spectroscopy (PES). The abrupt increase in density and decrease in thickness of the thin film at a curing temperature of 100 °C was attributed to a thermodynamically preferred state in the nanoscopic arrangement of the polymer chains; this was due to cofacial π-π interactions in a skewed manner between peripheral phenyl groups of the (tetraphenyl)silole rings of the adjacent polymer chains. Using the NEXAFS spectrum to assess high electron affinity, the LUMO energy level of the dielectric thin film cured at 150 °C was positioned 1 eV above the Fermi energy level (E(F)). The electron trapping of the dielectric thin films was confirmed from the positive flat band shift (ΔV(FB)) in the capacitance-voltage (C-V) measurements performed within the metal-insulator-semiconductor (MIS) device structure, which strongly verified the polymer design concept. From the simple kinetics model of the electron transport, it was proposed that the flat band shift (ΔV(FB)) or trap density of the negative charges (|ρ|) was logarithmically proportional to the decay constant (β) for the electron-tunneling process. When a phenyl group of a silole ring in a polymer chain was inserted into the two available phenyl groups of another silole ring in another polymer chain, the electron transfer between the groups was enhanced, decreasing the trap density of the negative charges (|ρ|). For the thermodynamically preferred state generating the high refractive index, the distance between the two phenyl groups of the adjacent polymer chains was estimated to be in the range of 0.27-0.36 nm. 相似文献
Malaria is a devastating mosquito-borne disease, which affects hundreds of millions of people each year. It is transmitted predominantly by Anopheles gambiae, whose females must be >10 days old to become infective. In this study, cuticular lipids from a laboratory strain of this mosquito species were analyzed using a mass spectrometry method to evaluate their utility for age, sex and mating status differentiation. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS), in conjunction with an acenaphthene/silver nitrate matrix preparation, was shown to be 100% effective in classifying A. gambiae females into 1, 7–10, and 14 days of age. MALDI-MS analysis, supported by multivariate statistical methods, was also effective in detecting cuticular lipid differences between the sexes and between virgin and mated females. The technique requires further testing, but the obtained results suggest that MALDI-MS cuticular lipid spectra could be used for age grading of A. gambiae females with precision greater than with other available methods. 相似文献
In a continuation of our earlier work, a multiresidual analytical method using 48 frequently used neutral pesticides in a water matrix was developed and validated in this study. The samples were extracted with dichloromethane and the pesticides were analyzed via GC-NPD followed by confirmation with GC-MS. Good linearity was detected over a concentration range of 0.01-1.0 microg/mL with correlation coefficients (r(2) ) in excess of 0.982. The recoveries were measured between 70.7 and 111.4% for the majority of the targeted pesticides with relative standard deviations (RSDs) of less than 20%. The LODs and LOQs were in ranges of 0.1-2 and 0.33-6.6 microg/L, respectively. A total of 66 water samples were collected from different locations in Yeongsan and the Sumjin River, Republic of Korea, and were analyzed in accordance with the developed method. None of the water samples were determined to contain any of the targeted pesticides. The method has been shown to be simpler, faster, and more cost-effective than the method established by the Environmental Protection Agency (EPA). 相似文献
One 8-phenyl and two 8-mesityl-substituted "scorpionate"-like BODIPY-type species of the formula [3,4,4-tris(5-R-(2-thienyl))-8-(2,4,6-R'-phenyl)-4-bora-3a,4a-diaza-s-indacene (R = H, R' = H, 3a; R, = H, R' = Me, 2a; R, = Me, R' = Me, 2b)] have been synthesized and fully characterized. Importantly, differences in their solution (MeCN) optical Cu(2+) and Hg(2+) probing capacity via SSS-chelation were investigated. Compounds 2a-3a were prepared from the requisite 8-substituted BODIPY complexes. They were characterized first by complete (1)H, (11)B and (13)C NMR spectroscopic assignments (CD(3)Cl or CD(3)C(O)CD(3)); the molecular structures of 2a and 3a were determined by X-ray crystallography. Compounds 2a-3a were studied by UV-vis and fluorescence spectroscopy [Φ(F) = 0.27 ± 0.013 (2a); 0.024 ± 0.0016 (2b); 0.0034 ± 0.00047 (3a)]. Importantly, low [Cu(2+)] with 3a (<3.0 × 10(-5) M) gave rise to an increase of fluorescence intensity (off-on; 6.3-fold), whereas with 2a it decreased (on-off). When [Hg(2+)] (<3.0 × 10(-5) M) was added to 2b, the λ(em,max) value increased (off-on; 3.2-fold), and for 2a, it decreased (on-off). The association constant (K(a)) for Hg(2+)·2a was determined to be 3120 ± 307 M(-1). An approximate stoichiometric 1:1 binding determined by Job plot analysis is in line with successful DFT modeling of SSS-Cu(2+) binding for this system type. (1)H NMR spectroscopy also revealed tentative sets of product complex peaks. These simple differences caused by formal ligand Me-group incorporation are the first for any related fluorophores, to the best of our knowledge. 相似文献
This paper presents an interior point method to determine the minimum energy conformation of alanine dipeptide. The CHARMM energy function is minimized over the internal coordinates of the atoms involved. A barrier function algorithm to determine the minimum energy conformation of peptides is proposed. Lennard-Jones 6-12 potential which is used to model the van der Waals interactions in the CHARMM energy equation is used as the barrier function for this algorithm. The results of applying the algorithm for the alanine dipeptide structure as a function of varying number of dihedral angles are reported, and they are compared with that obtained from genetic algorithm approach. In addition, the results for polyalanine structures are also reported. 相似文献
A PDA based sensor, derived from a di‐(2‐picolyl) amine (DPA) substituted diacetylene monomer, displayed a selective colorimetric change and a large fluorescence enhancement in the presence of lead ions. The lead selective PDA‐based chemosensor enabled easy detection of the presence of lead in 100% aqueous solution by the naked‐eye.