首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25549篇
  免费   4120篇
  国内免费   2375篇
化学   17855篇
晶体学   309篇
力学   1532篇
综合类   109篇
数学   2921篇
物理学   9318篇
  2024年   70篇
  2023年   523篇
  2022年   946篇
  2021年   908篇
  2020年   1007篇
  2019年   992篇
  2018年   826篇
  2017年   727篇
  2016年   1203篇
  2015年   1152篇
  2014年   1345篇
  2013年   1789篇
  2012年   2399篇
  2011年   2407篇
  2010年   1577篇
  2009年   1499篇
  2008年   1643篇
  2007年   1506篇
  2006年   1355篇
  2005年   1151篇
  2004年   838篇
  2003年   642篇
  2002年   607篇
  2001年   442篇
  2000年   434篇
  1999年   513篇
  1998年   426篇
  1997年   436篇
  1996年   451篇
  1995年   358篇
  1994年   306篇
  1993年   234篇
  1992年   234篇
  1991年   198篇
  1990年   169篇
  1989年   143篇
  1988年   97篇
  1987年   109篇
  1986年   87篇
  1985年   82篇
  1984年   47篇
  1983年   43篇
  1982年   35篇
  1981年   18篇
  1980年   11篇
  1979年   10篇
  1978年   6篇
  1976年   9篇
  1975年   11篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
961.
Mesoporous silica nanoparticles (MSN) were coated by pH‐responsive polymer chitosan‐poly (methacrylic acid) (CS‐PMAA). This nano drug delivery system showed good application prospects and the polymer‐coated microspheres were promising site‐specific anticancer drug delivery carriers in biomedical field. A continuous detection of pH‐responsive drug delivery system in cells in situ, utilizing MSN/CS‐PMAA composite microspheres, was proposed. Two kinds of different cell lines, tumor cell line (Hela) and normal somatic cells (293T), were used to investigate the behaviours of the drug loaded system in the cells. Conclusions could be drawn from the fluorescent images obtained by confocal laser scanning microscopy (CLSM), modified drug‐loaded microspheres (MSN/CS‐PMAA) were ingested into cells more easily, the uptake of DOX@FITC‐MSN/CS‐PMAA by HeLa/293T cells were performed at pH 7.4/pH 6.8, DOX was released during the ingestion process, fluorescence intensity decreased with time because of efflux transport and photo‐bleaching. Fluoresence detection by flow cytometry was performed as comparison. The continuous fluorescent observation in situ could be widely used in the pH‐responsive releasing process of drug delivery system in the cells.  相似文献   
962.
Graphene platelet (GP)-Ru(phen) 3 2+ assembles have been prepared through self-assembly of poly sodium styrenesulfonate (PSS) functionalized GPs and Ru(phen) 3 2+ driven by electrostatic attraction interactions in aqueous solution. The resultant assembled GP-Ru(phen) 3 2+ hybrid structure modified electrode exhibits excellent electrochemiluminescence (ECL) behaviors because of the ECL active species Ru(phen) 3 2+ contained therein.  相似文献   
963.
建立了测定工业用甲醇和噻吩中硫、氯含量的离子色谱检测方法。样品经(700±25)℃灼烧后,残留物用蒸馏水洗涤,利用离子色谱仪进行分析。甲醇和噻吩中硫、氯检测结果的相对标准偏差为1.04%~1.26%,加标回收率为99.2%~101.2%。该方法操作简单,精密度和准确度高,可用于大部分可燃性有机化合物中硫、氯含量的检测。  相似文献   
964.
This paper presents a microsensor chip integrated with a gold nanoparticles‐modified ultramicroelectrode array (UMEA) as the working electrode for the detection of copper ions in water. The microsensor chip was fabricated with Micro‐Electromechanical System technique. Gold nanoparticles were electrodeposited onto the surface of UMEA at a constant potential of ?0.3 V. The ratio d/Rb of interelectrode spacing (d) over the individual electrode’s radius (Rb) was investigated to improve the electrochemical performance. The UMEA with a d/Rb of 20 showed the best hemispherical diffusion mode, resulted in fast response time and high current response. The gold nanoparticles increased the active surface area of UMEA by not changing the geometries of UMEA, and the current response was increased further. Incorporating the optimized characteristic of UMEA and gold nanoparticles, the microsensor showed a good linear range from 0.5 to 200 µg L?1 of copper ions in the acetate buffer solutions with the method of square wave stripping voltammetry. Compared with the gold nanoparticles‐modified disk electrode, the gold nanoparticles‐modified UMEA showed higher sensitivity (0.024 µA mm?2 µg?1 L) and lower limit of detection (0.2 µg L?1). Water samples from river water and tap water were analyzed by the microsensor chip with recovery ranging from 100.7 % to 107.8 %.  相似文献   
965.
Hierarchical ZSM-11 microspheres with intercrystalline mesoporous properties and rod-like crystals intergrowth morphology have been synthesized using a spot of tetrabutylammonium as a single template.XRD,FTIR,SEM,TEM and N2 adsorption analysis revealed that each individual particle was composed of nanosized rod crystals inserting each other and the intercrystalline voids existing among rods gave a significant mesopore size distribution.Steam treatment result demonstrated the excellent hydrothermal stability of samples.Various crystallization modes including constant temperature crystallization (one-stage crystallization) and two-stage temperature-varying crystallization with different 1st stage durations were investigated.The results suggested that the crystallization modes were mainly responsible for the adjustable particle size and textural properties of samples while the small amount of tetrabutylammonium bromide was mainly used to direct the formation of both ZSM-11 framework and its intergrowth morphology.Furthermore,the performance of optimal ZSM-11 as an active component for the catalytic pyrolysis of heavy oil was also investigated.Compared with the commercial pyrolysis catalyst,the hierarchical ZSM-11 catalyst exhibited a high selectivity to desired products(LPG+gasoline+diesel),as well as a much lower dry gas and coke yield,plus a high selectivity and yield of light olefins(C=3 C=4)and very poor selectivity to benzene.Therefore,fully open micropore-mesopore connectivity would make such hierarchically porous ZSM-11 zeolites very attractive for applications in clean petrochemical catalysis field.  相似文献   
966.
A crystal structure of {H2O@CB[5]·(NH4PF6)2}·9(H2O) which consists of supramolecular chains self-assembled by water clusters and water capsules alternately was demonstrated. A water molecule is encapsulated in the cavity of CB[5] whose portals are occupied by two NH4 +, resulting in the formation of water capsule. The water clusters are made up of (H2O)4 and (H2O)5 clusters. The (H2O)4 cluster forms zigzag line and (H2O)5 features “Y-shape” structure. Moreover, anion channels consisting of six parallel supramolecular chains are occupied by PF6 ?.  相似文献   
967.
Fourier transform infrared microspectroscopy is a powerful tool to obtain knowledge about the spatial and/or temporal distributions of the chemical compositions of plants for better understanding of their biological properties. However, the chemical morphologies of plant leaves in the plane of the blade are barely studied, because sections in this plane for mid-infrared transmission measurements are difficult to obtain. Besides, native compositions may be changed by chemical reagents used when plant samples are microtomed. To improve methods for direct infrared microspectroscopic imaging of plant leaves in the plane of the blade, the bulk and surface chemical morphologies of nonmicrotomed Ginkgo biloba leaves were characterized by near-infrared transmission and mid-infrared attenuated total reflection microspectroscopic imaging. A new self-modeling curve resolution procedure was proposed to extract the spectral and concentration information of pure compounds. Primary and secondary metabolites of secretory cavities, veins, and mesophylls of Ginkgo biloba leaf blades were analyzed, and the distributions of cuticle, protein, calcium oxalate, cellulose, and ginkgolic acids on the adaxial surface were determined. By the integration of multiple infrared microspectroscopic imaging and chemometrics methods, it is possible to analyze nonmicrotomed leaves and other plant samples directly to understand their native chemical morphologies in detail.
Graphical abstract
Visible and infrared microspectroscopic images of a Ginkgo biloba leaf blade. PC-1 score image shows the physical morphology, while the positive and negative part of PC-2 score image shows the distribution of dichotomous branching veins and secretory cavities, respectively  相似文献   
968.
969.
Rapid and efficient side‐chain functionalization of polypeptide with neighboring carboxylgroups is achieved via the combination of ring‐opening polymerization and subsequent thiol‐yne click chemistry. The spontaneous formation of polymersomes with uniform size is found to occur in aqueous medium via electrostatic interaction between the anionic polypeptide and cationic doxorubicin hydrochloride (DOX·HCl). The polymersomes are taken up by A549 cells via endocytosis, with a slightly lower cytotoxicity compared with free DOX ·HCl. Moreover, the drug‐loaded polymersomes exhibit the enhanced therapeutic efficacy, increase apoptosis in tumor tissues, and reduce systemic toxicity in nude mice bearing A549 lung cancer xenograft, in comparison with free DOX ·HCl.  相似文献   
970.
A simple, rapid, high‐throughput, and highly sensitive LC–MS/MS was developed to determine anisodamine in a small volume (50 μL) of beagle dog plasma using atropine sulfate as the internal standard. The analyte and internal standard were isolated from 50 μL plasma samples after a one‐step protein precipitation using Sirocco 96‐well protein precipitation filtration plates. The separation was accomplished on a Hanbon Hedera CN column (100 × 4.6 mm, 5 μm) and the run time was 4 min. A Micromass Quatro Ultima mass spectrometer equipped with an ESI source was operated in the multiple reaction monitoring mode with the precursor‐to‐product ion transitions m/z 306.0→140.0 (anisodamine) and 290.0→123.9 (atropine) used for quantitation. The method was sensitive with a low LOQ of 0.05 ng/mL, and good linearity in the range 0.05–50 ng/mL for anisodamine (r2 ≥ 0.995). All the validation data, such as accuracy, intra‐ and interrun precision, were within the required limits. The method was successfully applied to the pharmacokinetic study of anisodamine hydrochloride injection in beagle dogs.  相似文献   
[首页] « 上一页 [92] [93] [94] [95] [96] 97 [98] [99] [100] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号