首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   949篇
  免费   61篇
  国内免费   6篇
化学   621篇
晶体学   7篇
力学   38篇
综合类   1篇
数学   96篇
物理学   253篇
  2022年   6篇
  2021年   11篇
  2020年   13篇
  2019年   23篇
  2018年   10篇
  2017年   6篇
  2016年   25篇
  2015年   34篇
  2014年   31篇
  2013年   47篇
  2012年   76篇
  2011年   73篇
  2010年   44篇
  2009年   57篇
  2008年   44篇
  2007年   47篇
  2006年   46篇
  2005年   39篇
  2004年   31篇
  2003年   19篇
  2002年   26篇
  2001年   17篇
  2000年   19篇
  1999年   23篇
  1998年   8篇
  1997年   17篇
  1996年   14篇
  1995年   11篇
  1994年   10篇
  1993年   7篇
  1992年   6篇
  1991年   15篇
  1990年   9篇
  1989年   5篇
  1988年   13篇
  1987年   8篇
  1986年   6篇
  1985年   21篇
  1984年   13篇
  1983年   5篇
  1982年   5篇
  1981年   13篇
  1980年   4篇
  1979年   7篇
  1978年   6篇
  1977年   8篇
  1974年   7篇
  1973年   4篇
  1970年   4篇
  1969年   3篇
排序方式: 共有1016条查询结果,搜索用时 140 毫秒
931.
New highly solution‐processable aniline/butylthioaniline copolymers were prepared via oxidative copolymerization (OCP) and by concurrent reduction and substitution (CRS). Butylthio‐substituted polyaniline obtained via the CRS route (Pan‐SBu), being in line with the expected property changes after the addition of an electron‐donating substituent to an aromatic ring, displayed a lowered redox potential (E0) and a redshifted maximum wavelength (λmax; ultraviolet–visible) in comparison with its parent unsubstituted polyaniline (Pan). However, copolymers CP1–CP4 (obtained via the OCP method) displayed opposite behaviors, showing higher E0 values and blueshifts in λmax than the unsubstituted Pan. The results suggested that CP1–CP4 had shorter conjugation lengths than the unsubstituted Pan, possibly because of their chain conjugation defects (e.g., 1,3‐ring linkage structures), as evidenced by IR studies. The results of 1H NMR studies also indicated that Pan‐SBu had much higher structural homogeneity than copolymer CP4. Because the CRS synthetic route involved no backbone alternations, the resultant copolymer (Pan‐SBu) should have maintained the same backbone structure and hence the high conductivity of the parent unsubstituted Pan. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1767–1777, 2005  相似文献   
932.
In this study, carbon nanotubes (CNTs) were first modified using N,N′‐ dicyclohexylcarbodiimide (DCC) dehydrating agents. Subsequently, the poly(butylene succinate)/multiwalled carbon nanotube (PBS/MWNTs) nanocomposites were prepared through facile melt blending. Thermal degradation of these PBS/MWNT nanocomposites was investigated; the kinetic parameters of degradation were calculated using the Coats and Redfern, Ozawa, and Horowitz and Metzger methods, respectively. It was found that the degradation reaction mechanism of PBS and the CNT‐C18 containing nanocomposites at lower temperature was likely to produce an F1 model through reaction of random chain cleavage (cis‐elimination). However, the reaction mechanism at higher temperature was likely to be a D1 model because of the dominant diffusion control effect. Moreover, it was found that the activation energies of CNT‐C18‐containing PBS nanocomposites were first increased with the content of CNT‐C18, but then decreased after the content was larger than 0.5 wt % for all models at differing heating rates. This may be due to the formation of a conductive network of CNTs in the polymer matrix at higher content of CNTs, which lead to better heat and electrical conductivity. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1231–1239, 2009  相似文献   
933.
We have developed efficient white‐light‐emitting polymers through the incorporation of low‐bandgap orange‐light‐emitting benzoselenadiazole ( BSeD ) moieties into the backbone of a blue‐light‐emitting bipolar polyfluorene (PF) copolymer, which contains hole‐transporting triphenylamine and electron‐transporting oxadiazole pendent groups. By carefully controlling the concentrations of the low‐energy‐emitting species in the resulting copolymers, partial energy transfer from the blue‐fluorescent PF backbone to the orange‐fluorescent segments led to a single polymer emitting white light and exhibiting two balanced blue and orange emissions simultaneously. Efficient polymer light‐emitting devices prepared using this copolymer exhibited luminance efficiencies as high as 4.1 cd/A with color coordinates (0.30, 0.36) located in the white‐light region. Moreover, the color coordinates remained almost unchanged over a range of operating potentials. A mechanistic study revealed that energy transfer from the PF backbone to the low‐bandgap segments, rather than charge trapping, was the main operating process involved in the electroluminescence process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2938–2946, 2007  相似文献   
934.
We use the three-dimensional finite-difference time-domain method to investigate surface plasmon polariton coupling between two nano-recording marks which are of different shapes. The different coupling characteristics and the influence of these coupling effects on the read-out reflection signal will be discussed.  相似文献   
935.
The paper describes a wet process for modifying the surface of polydimethylsiloxane (PDMS) using H2SO4/HNO3 solutions. The oxidation on the surface of PDMS was confirmed by the examinations of Fourier transform infrared spectrometry (FTIR), contact angle of water drop and X-ray photoelectron spectroscopy (XPS). The hydrophobic surface of pristine PDMS was not only changed to hydrophilic, but also formed wrinkles on it after chemical modification. Bilayer systems, stiff oxidized PDMS layers were capped on soft PDMS foundations, would generate easily compressive stresses due to the large difference in volumetric contraction rates and led to form wrinkles on the surface. Experimental results demonstrated the periodicity of wrinkles was controllable by controlling the duration of oxidation. Therefore, wrinkles could be arranged orderly by the guidance of external forces before oxidization. The potential technology for generating and ordering wrinkles on the PDMS surface is valuable in the applications of pressure sensors, biology, micro-optics and nano-/micro-fabrication in the future.  相似文献   
936.
Under the articulation of artificial joints, ultra-high molecular weight polyethylene (UHMWPE) acts as a bearing surface under the lubrication of synovial fluid containing various proteins. Albumin is the most abundant composition and acts as the interfacial molecule in the boundary lubrication regime. The dissipated energy including thermal energy from the tribological process may lead to the conformational change of albumin molecules.In this study, a series of experiments were designed and carried out to investigate the association of thermal unfolding albumin and the frictional characteristics of highly-crosslinked UHMWPE (x-UHMWPE). An accelerated oxidation experiment was used to prepare x-UHMWPE with an oxidized surface. Analysis of the albumin protein by circular dichroism (CD) spectroscopy was performed to detect the conformational changes during a thermal process. In addition, a molecular simulation was performed to understand the structural change of albumin at various temperatures and the exposed hydrophobic contact areas. Linear reciprocating frictional tests were carried out to obtain the start-up friction coefficients. The results indicate that a decrease of α-helix content and an unfolding of the secondary structure of albumin were observed with increasing temperatures which may come from the frictional heat of joint articulation process. The conformational change of albumin differentiates the frictional characteristics for x-UHMWPE with different oxidation levels. A model, describing that the properties of the lubricating molecules and articulating surfaces may affect the adsorption of the boundary lubrication thin film which is critical to the tribological behavior, is proposed.  相似文献   
937.
Aluminum chlorohydrate (Al2(OH)5Cl?2H2O, ACH) is an active ingredient in many antiperspirants and deodorants formulation to reduce the body odors (mainly sweat) through interaction with apocrine sweat glands to produce insoluble aluminum hydroxide and free chloride, which then plugs the sweat gland that stops the flow of sweat to the skin's surface. We demonstrated here an one drop (50 μL) electrochemical sensing of the ACH using an in‐built three screen‐printed electrodes assembly containing Ag as working and pseudo reference and carbon as counter electrode system (AgSPE). The free Cl? ion librated from ACH/H2O reaction was detected at AgSPE surface at 0.072 V vs. pseudo Ag reference electrode system in pH 2 phosphate solution by Cyclic voltammetric Technique. Under optimal working condition the AgSPE shows a linear calibration plot in the window of 30–2000 ppm of ACH with sensitivity and regression values of 0.104 μA/ppm and 0.998 respectively. Calculated detection limit is 3.03 ppm. RSD values of intra‐ and interassays were 0.19% and 2.79% respectively. Finally, real sample (antiperspirant deodorant lotions) assays were successfully demonstrated with results comparable to the predicted values.  相似文献   
938.
光子晶体是一种介电常数周期变化的功能材料,其基本特征是具有光子带隙。光子晶体理论诞生已三十年,基于理论及实验的研究取得了许多成绩。当所制备的光子带隙与光波的波长相当时,光子晶体材料抑制光子在一定频段内的传播。由于在光学、电学、热学、磁学等方面均有优良特性和潜在应用,光子晶体作为一种新型材料也越来越受到科研人员的青睐。不论在可加工性方面还是在传播特性方面,二维光子晶体的优势正逐渐体现出来。本文重点阐述二维光子晶体的研究进展,分别介绍了二维光子晶体的结构与性能特点以及近年来发展出的新型制备方法,如自组装法、刻蚀法、多光束干涉法等,并着重列举其在传感器、波导、光纤、太赫兹技术等领域的发展现状,表明二维光子晶体作为超材料具有巨大的发展空间和潜力。最后,本文对二维光子晶体今后的研究方向和发展前景作了展望。  相似文献   
939.
The molecular dynamics simulation (MD) was carried out to investigate the mechanical properties of pristine polymethylmethacrylate (PMMA) and the composites of PMMA mixed with the silver nanoparticles (PMMA/AgNPs) at two AgNP weight fractions at 0.60 and 1.77 wt%. From the stress–strain profiles by the tensile process, it can be seen that the improvement on Young’s modulus is insignificant at these lower AgNP fractions. The tensile strength of pristine PMMA can be slightly improved by the embedded AgNPs at 1.77 wt%, because the local density and strength of PMMA in the vicinity of AgNP surface within about 8.2 Å are improved. For the temperature effect on the mechanical properties of pristine PMMA and PMMA/AgNP composite, the Young’s moduli and strength of pristine PMMA and PMMA/AgNP composite significantly decrease at temperatures of 450 and 550 K, which are close to the predicted melting temperature of pristine PMMA about 460 K. At these temperatures, the PMMA materials become more ductile and the AgNPs within the PMMA matrix display higher mobility than those at 300 K. When the tensile strain increases, the AgNPs tend to get closer and the fracture appears at the PMMA part, leading to the close values of Young’s modulus and ultimate strength for pristine PMMA and PMMA/AgNP composite at 450 and 550 K.
Graphical abstract Stress–strain curves of pristine PMMA, polymethylmethacrylate (PMMA)/silver nanoparticles (AgNP) (0.60%), and PMMA/AgNP (1.77%). Inset images: local shear strain of pristine PMMA (red) and PMMA/AgNP (1.77%) (green).
  相似文献   
940.
We propose and demonstrate experimentally a stabilized and wavelength-selective erbium-doped fiber ring laser in single-longitudinal-mode operation with Fabry-Perot laser diode (FP-LD) and using a tunable bandpass filter (TBF) inside and outside a Sagnac ring cavity. The side-mode suppression ratios of 21 dB and 36.5 dB and the output power of -3.6 dB m and -8.7 dB m in the wavelengths of 1524.45-1562.35 nm and 1531.07-1562.35 nm with the tuning step of 1.4 nm can be achieved when the TBF outside and inside Sagnac loop, respectively. The output wavelength variation of zero and the output power fluctuation of <0.1 dB are also obtained. Moreover, the transmission efficiency of the ring laser has also been performed experimentally under a 1.25, 2.5 and 10 Gb/s external modulation, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号