首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   9篇
  国内免费   4篇
化学   161篇
力学   10篇
数学   23篇
物理学   65篇
  2024年   3篇
  2023年   5篇
  2022年   15篇
  2021年   13篇
  2020年   9篇
  2019年   10篇
  2018年   12篇
  2017年   5篇
  2016年   9篇
  2015年   7篇
  2014年   16篇
  2013年   17篇
  2012年   15篇
  2011年   12篇
  2010年   13篇
  2009年   10篇
  2008年   11篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   5篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1995年   5篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有259条查询结果,搜索用时 0 毫秒
1.
Effects of a low molecular weight physically adsorbed polyethylene oxide (PEO) and the range of the electrostatic repulsion on the rheological behavior of silica dispersions (as a model system) has been investigated. Particular attention is given to the evolution of the rheological behavior with increasing the polymer concentration in the system and also effectiveness of the polymer as a dispersant under extreme conditions (high ionic strength). Results indicate that at small separation distances and low polymer coverage, the polymer chains are long enough to adsorb on the surface of two particles simultaneously causing bridging flocculation in the system and hence increasing the viscosity and linear viscoelastic functions of the dispersion. A significant increase was observed in the viscosity of the dispersion at salt concentrations high enough to eliminate electrostatics between the particles. Under these conditions,the viscosity of the system increased significantly when PEO was added to the dispersion showing that at high electrolyte concentrations, a neutral polymer such as PEO is not able to stabilize the system.  相似文献   
2.
This paper addresses the dynamics of COVID-19 using the approach of age-structured modeling. A particular case of the model is presented by taking into account age-free parameters. The sub-model consisting of ordinary differential equations (ODEs) is investigated for possible equilibria, and qualitative aspects of the model are rigorously presented. In order to control the spread of the disease, we considered two age- and time-dependent non-pharmaceutical control measures in the age-structured model, and an optimal control problem using a general maximum principle of Pontryagin type is achieved. Finally, sample simulations are plotted which support our theoretical work.  相似文献   
3.
Banana fiber (BF)-reinforced low-density polyethylene (LDPE) unidirectional composites were fabricated by the compression molding process with 40 wt% fiber loading. The fibers were modified with methylacrylate (MA) mixed with methanol (MeOH) along with 2% benzyl peroxide under thermal curing method at different temperatures (50–90 °C) for different curing times (10–50 min) in order to have better compatibility with the matrix. The effect of fiber surface modification on the mechanical properties (tensile and impact properties) of the composites were evaluated. Monomer concentration, curing temperature, and curing time were optimized in terms of polymer loading and mechanical properties. The mechanical properties were found to be improved based on the improved interaction between the reinforcement and the matrix. Optimized BFs were again treated with 2–5 wt% starch solutions and composites made of 4% starch treated BF showed the highest mechanical properties than that of MA treated composites. Scanning electron microscopy (SEM) was performed to get an insight into the morphology of the composites. Water uptake and soil degradation test of the composites were also investigated.  相似文献   
4.
Collagen is the most abundant protein in humans and animals, comprising of one third of the total proteins that accounts for three quarters of the dry weight skin in humans. Collagen containing a range of proteins has been reported for tissue engineering applications, but, only a small number of studies related to chemical structure evaluation of collagen are found in the literature. Collagen can be obtained from both the natural and synthetic sources and offers a wide range of biomedical applications due to its excellent biocompatibility and low immunogenicity. Hence, it is important to identify chemical structural properties of collagen and Fourier transform infrared (FTIR) appears to be a technique of choice to study their chemical structure. This review aims to highlight the use of FTIR to study collagen-based biomaterials, using it for characterization of collagen extracted from various sources. Characterization of collagen-based materials used in wound healing, skin substitutes, derma fillers, and aging of skin, collagen containing drug delivery agents, collagen-based materials used in tissue engineering, bone regeneration, and osteogenic differentiation is discussed in detail. FTIR analysis of collagen-containing materials used for dental applications, cleft-palate, and in alveolar-ridge preservation has also been highlighted.  相似文献   
5.
6.
Functionalized magnetite nanoparticles (Fe3O4) were prepared using the coprecipitation method followed by functionalization with a multipotent antioxidant (MPAO). The MPAO was synthesized and analyzed using FTIR and NMR techniques. In this study, the functionalized nanoparticles (IONP@AO) were produced and evaluated using the FTIR, XRD, Raman, HRTEM, FESEM, VSM, and EDX techniques. The average determined particle size of IONP@AO was 10 nanometers. In addition, it demonstrated superparamagnetic properties. The magnitude of saturation magnetization value attained was 45 emu g−1. Virtual screenings of the MPAO’s potential bioactivities and safety profile were performed using PASS analysis and ADMET studies before the synthesis step. For the DPPH test, IONP@AO was found to have a four-fold greater ability to scavenge free radicals than unfunctional IONP. The antimicrobial properties of IONP@AO were also demonstrated against a variety of bacteria and fungi. The interaction of developed nanoantioxiants with biomolecules makes it a broad-spectrum candidate in biomedicine and nanomedicine.  相似文献   
7.
8.
In this paper we discuss symmetries of a nonlinear wave equation that arises as a consequence of some Riemannian metrics of signature −2. The objective of this study is to show how geometry can be responsible in giving rise to a nonlinear inhomogeneous wave equation rather than assuming nonlinearities in the wave equation from physical considerations. We find Lie point symmetries of the corresponding wave equations and give their solutions in two cases. Some interesting physical conclusions relating to conservation laws such as energy, linear and angular momenta are also determined.  相似文献   
9.
We demonstrate the synthesis and investigate the electrical and optical characteristics of ‘nanocorals’ (NCs) composed of CuO/ZnO grown at low temperature through the hydrothermal approach. High-density CuO nanostructures (NSs) were selectively grown on ZnO nanorods (NRs). The synthesized NCs were used to fabricate p–n heterojunctions that were investigated by the current density–voltage (JV) and the capacitance–voltage (CV) techniques. It was found that the NC heterojunctions exhibit a well-defined diode behavior with a threshold voltage of about 1.52 V and relatively high rectification factor of ~760. The detailed forward JV characteristics revealed that the current transport is controlled by an ohmic behavior for V≤0.15 V, whereas at moderate voltages 1.46≤V<1.5 the current follows a J? α?exp(βV) relationship. At higher voltages (≥1.5 V) the current follows the relation J? α? V 2, indicating that the space-charge-limited current mechanism is the dominant current transport. The CV measurement indicated that the NC diode has an abrupt junction. The grown CuO/ZnO NCs exhibited a broad light absorption range that is covering the UV and the entire visible parts of the spectrum.  相似文献   
10.
We investigated how different doses of microwave irradiation (MR) affect seed germination in Sorghum, including the level of remediation against textile and surgical wastewater (WW) by modulating biochemical and morpho-physiological mechanisms under glutamic acid (GA) application. The experiment was conducted to determine the impact of foliar-applied GA on Sorghum under wastewater conditions. Plants were treated with or without microwave irradiation (30 s, 2.45 GHz), GA (5 and 10 mM), and wastewater (0, 25, 50, and 100). Growth and photosynthetic pigments were significantly decreased in plants only treated with various concentrations of WW. GA significantly improved the plant growth characteristics both in MR-treated and -untreated plants compared with respective controls. HMs stress increased electrolyte leakage (EL), hydrogen peroxide (H2O2), and malondialdehyde (MDA) content; however, the GA chelation significantly improved the antioxidant enzymes activities such as ascorbate oxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) both in MR-treated and -untreated plants under WW stress compared with respective controls. The results suggested that the MR-treated plants accumulate higher levels of HMs under GA addition in comparison to the WW-only-treated and MR-untreated plants. The maximum increase in Cd accumulation was observed in the range of 14–629% in the roots, 15–2964% in the stems, and 26–4020% in the leaves; the accumulation of Cu was 18–2757% in the roots, 15–4506% in the stems, and 23–4605% in the leaves; and the accumulation of Pb was 13–4122% in the roots, 21–3588% in the stems, and 21–4990% in the leaves under 10 mM GA and MR-treated plants. These findings confirmed that MR-treated sorghum plants had a higher capacity for HMs uptake under GA and could be used as a potential candidate for wastewater treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号