首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   0篇
化学   13篇
力学   70篇
数学   23篇
物理学   24篇
  2018年   3篇
  2016年   3篇
  2015年   1篇
  2013年   1篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   7篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   9篇
  2002年   2篇
  2001年   1篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1980年   1篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
91.
92.
Molecular constitutive models for rubber based on non-Gaussian statistics generally involve the inverse Langevin function. Such models are widely used since they successfully capture the typical strain-hardening at large strains. Limiting chain extensibility constitutive models have also been developed on using phenomenological continuum mechanics approaches. One such model, the Gent model for incompressible isotropic hyperelastic materials, is particularly simple. The strain-energy density in the Gent model depends only on the first invariant I 1 of the Cauchy–Green strain tensor, is a simple logarithmic function of I 1 and involves just two material parameters, the shear modulus μ and a parameter J m which measures a limiting value for I 1−3 reflecting limiting chain extensibility. In this note, we show that the Gent phenomenological model is a very accurate approximation to a molecular based stretch averaged full-network model involving the inverse Langevin function. It is shown that the Gent model is closely related to that obtained by using a Padè approximant for this function. The constants μ and J m in the Gent model are given in terms of microscopic properties. Since the Gent model is remarkably simple, and since analytic closed-form solutions to several benchmark boundary-value problems have been obtained recently on using this model, it is thus an attractive alternative to the comparatively complicated molecular models for incompressible rubber involving the inverse Langevin function. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
93.
The piezoelectric phenomenon has been exploited in science and engineering for decades. Recent advances in smart structures technology have lead to a resurgence of interest in piezoelectricity, and in particular, in the solution of fundamental boundary-value problems. In this paper, we develop an analytic solution to the axisymmetric problem of an infinitely long, radially polarized, radially orthotropic piezoelectric hollow circular cylinder. The cylinder is subjected to uniform internal pressure, or a constant potential difference between its inner and outer surfaces, or both. An analytic solution to the governing equilibrium equations (a coupled system of second-order ordinary differential equations) is obtained. On application of the boundary conditions, the problem is reduced to solving a system of linear algebraic equations. The stress distributions in the cylinder are obtained numerically for two typical piezoceramics of technological interest, namely PZT-4 and BaTiO3. It is shown that the hoop stresses in a cylinder composed of these materials can be made virtually uniform throughout the cross-section by applying an appropriate set of boundary conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
94.
In this paper, the effect of material inhomogeneity on void formation and growth in incompressible nonlinearly elastic solids is examined. A bifurcation problem is considered for a solid composite sphere composed of two neo-Hookean materials perfectly bonded across a spherical interface. Under a uniform radial tensile dead-load, a branch of radially symmetric configurations involving a traction-free internal cavity bifurcates from the underformed configuration. Such a configuration is the only stable solution for sufficiently large loads. In contrast to the situation for a homogeneous neo-Hookean sphere, bifurcation here may occur either locally to the right orto the left. In the latter case, the cavity has finite radius on first appearance. This discontinuous change in stable equilibrium configurations is reminiscent of the snap-through buckling phenomenon observed in certain structural mechanics problems.Since this paper was written, the authors have carried out further analysis of the class of problems of concern here [11]. In particular the stress distribution in the composite neo-Hookean sphere has been described in [11].Paper presented at the 17th International Congress of Theoretical and Applied Mechanics, Grenoble, France, August 1988.  相似文献   
95.
Plane deformations of a curved strip, composed of an homogeneous cylindrically anisotropic linearly elastic material, are considered. The strip is in equilibrium under the action of end loads, with the lateral sides traction-free. Two conservation properties for certain cross-sectional stress measures are established, generalizing previously known results for the case of a rectangular strip. Such conservation properties are useful in assessing the influence of material anisotropy on Saint-Venant's principle, as well as in establishing convexity properties for cross-sectional stress measures. In particular, it is anticipated that the results should be useful in determining the extent of edge effects in the testing of anisotropic and composite curved strips.  相似文献   
96.
The purpose of this research is to investigate the effects of material inhomogeneity on the decay of Saint-Venant end effects in linear isotropic elasticity. This question is addressed within the context of anti-plane shear deformations of an inhomogeneous isotropic elastic solid. The mathematical issues involve the effects of spatial inhomogeneity on the decay rates of solutions to Dirichlet or Neumann boundary-value problems for a second-order linear elliptic partial differential equation with variable coefficients on a semi-infinite strip. The elastic coefficients are assumed to be smooth functions of the transverse coordinate. The estimated rate of exponential decay with distance from the loaded end (a lower bound for the exact rate of decay) is characterized in terms of the smallest positive eigenvalue of a Sturm–Liouville problem with variable coefficients. Analytic lower bounds for this eigenvalue are used to obtain the desired estimated decay rates. Numerical techniques are also employed to assess the accuracy of the analytic results. A related eigenvalue optimization question is discussed and its implications for the issue of material tailoring is addressed. The results of this paper are applicable to continuously inhomogeneous materials and, in particular, to functionally graded materials. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
97.
This paper provides an analytical approach for obtaining bounds on elastic stress concentration factors in the theory of finite anti-plane shear of homogeneous, isotropic, incompressible materials. The problem of an infinite slab with traction-free circular cavity subject to a state of finite simple shear deformation is considered. Explicit estimates are obtained for the maximum shearing stress in terms of the applied stress at infinity and constitutive parameters. The analysis is based on application of maximum principles for second-order quasilinear uniformly elliptic equations.  相似文献   
98.
The cross-section for the production of unusual mesons, such as (bc?) or (b?c), in photon-photon collisions is obtained in a high energy approximation. For a 100 + 100 GeV e+e? collider, the cross section is estimated to be about one unit of R for (bc?) and (b?c).  相似文献   
99.
This paper is concerned with investigation of the effects of strain-stiffening on the response of solid circular cylinders in the combined deformation of torsion superimposed on axial extension. The cylinders are composed of incompressible isotropic nonlinearly elastic materials. Our primary focus is on materials that undergo severe strain-stiffening in the stress-stretch response. In particular, we consider two particular phenomenological constitutive models for such materials that reflect limiting chain extensibility at the molecular level. The axial stretch γ and twist that can be sustained in cylinders composed of such materials are shown to be constrained in a coupled fashion. It is shown that, in the absence of an additional axial force, a transition value γ=γ t of the axial stretch exists such that for γ<γ t , the stretched cylinder tends to elongate on twisting whereas for γ>γ t , the stretched cylinder tends to shorten on twisting. These results are in sharp contrast with those for classical models such as the Mooney-Rivlin (and neo-Hookean) models that predict that the stretched circular cylinder always tends to further elongate on twisting. We also obtain results for materials modeled by the well-known exponential strain-energy widely used in biomechanics applications. This model reflects a strain-stiffening that is less abrupt than that for the limiting chain extensibility models. Surprisingly, it turns out that the results in this case are somewhat more complicated. For a fixed stiffening parameter, provided that the stretch is sufficiently small, the stretched bar always tends to elongate on twisting in the absence of an additional axial force. However, for sufficiently large stretch, the cylinder tends to shorten on undergoing sufficiently small twist but then tends to elongate on further twisting. These results are of interest in view of the widespread use of exponential models in the context of the mechanics of soft biological tissues. The special case of pure torsion is also briefly considered. In this case, the resultant axial force required to maintain pure torsion is compressive for all the models discussed here. In the absence of such a force, the bar would elongate on twisting reflecting the celebrated Poynting effect.   相似文献   
100.
The behavior of the fiber stretch in simple shear of soft materials fiber-reinforced with a single family of oriented parallel fibers is examined. The analysis is purely kinematical and the results are valid for both compressible and incompressible materials. It is shown that for a given amount of shear, for all fiber orientation angles in the range \(0 < \theta < \pi /4\), the fiber stretch increases with increasing \(\theta\) whereas in the range \(\pi /4 < \theta < \pi /2\), this is no longer the case and there is a particular fiber orientation for which the fiber stretch is a maximum. For a particular amount of shear corresponding to a special angle of shear (a “magic” angle of \(35.26^{\circ}\)), the fiber-orientation angle at which the fiber stretch is a maximum is its geometric complement namely a magic angle of \(54.74^{\circ}\). The results are also valid for torsion of a circular cylinder reinforced with a single family of helically wound fibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号