首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   2篇
化学   14篇
力学   3篇
数学   4篇
物理学   6篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  1999年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
11.
The reaction of diaminoglyoxime with aldehyde and ketone derivatives in the presence of p-toluene sulphonic acid in H2O–MeOH mixture at room temperature afforded nitrone derivatives in high yields within 10–140 min. The applicability of ketones in this reaction for the preparation of novel nitrones has been verified. The effect of the temperature on the stability of the structural isomers of the products has been studied by NMR as well. The results showed that, at high temperatures only one product could be observed. The nature of solvent and catalyst were evaluated and found that the strong acids H2SO4 and CF3SO3H in protic solvent CH3OH work well while neither CH3SO3H in protic solvent nor p-toluene sulphonic acid in aprotic solvents toluene and THF perform the same reactions.  相似文献   
12.
In a previous paper [P. G. Jambrina et al., J. Chem. Phys. 135, 034310 (2011)] various calculations of the rate coefficient for the Mu + H(2) → MuH + H reaction were presented and compared to experiment. The widely used standard quasiclassical trajectory (QCT) method was shown to overestimate the rate coefficients by several orders of magnitude over the temperature range 200-1000 K. This was attributed to a major failure of that method to describe the correct threshold for the reaction owing to the large difference in zero-point energies (ZPE) of the reactant H(2) and product MuH (~0.32 eV). In this Communication we show that by performing standard QCT calculations for the reverse reaction and then applying detailed balance, the resulting rate coefficient is in very good agreement with the other computational results that respect the ZPE, (as well as with the experiment) but which are more demanding computationally.  相似文献   
13.
The kinetics of the permanganic oxidation process of L ‐norleucine, L ‐leucine, L ‐iso‐leucine, and L ‐tert‐leucine in strong acid medium has been investigated using a spectrophotometric technique. Conclusive evidences have proven autocatalytic activity of Mn(II) for these reactions in strong acid medium analogous to weak acid medium, but in the former, ratio of Mn(II) to amino acid concentration must reach a certain amount for autocatalytic phenomenon to emerge, which we call “critical ratio.” This critical ratio depends on the nature of the amino acid employed. Thus considering “delayed autocatalytic behavior” of Mn(II) ions, rate equations satisfying observations for both catalytic and noncatalytic routes have been presented. Kinetic data in a noncatalytic pathway have been fitted to a biparametric equation including inductive, steric, and hyperconjugation correction effects, and it is determined that by shifting the side branch on a carbon chain toward an α‐carbon atom (adjacent to amino acid's functional group) and also adding branches to the α‐carbon atom, the reaction rate in the noncatalytic pathway decreases. Inductive and steric hindrance factors in amino acid's carbon chain are effective on processes' rate both in catalytic and noncatalytic pathways. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 1–11, 2006  相似文献   
14.
The chemistry in bulk gases involves reactions of nascent radicals that are almost invariably non-thermal. The energy requirements of reactions involving radicals depend on the reactions that produce them and the intra- and inter-molecular energy transfer they may undergo. Here, we extend the generalised Tolman activation energy (GTEa) method to non-thermal reactions in molecular dynamics (MD) simulations. We compute the energy requirements, which we refer to as chemical-activation energies (CE a), of reactions of radicals formed by the decomposition of hydrogen peroxide. The equipartition theorem is adapted to compute average energies of small isolated systems with internal degrees of freedom in MD simulations with periodic boundary conditions, which is necessary for application of the GTEa method to non-thermal reactions. To illustrate the applicability of the GTEa method to non-thermal reactions, we present CE a results for H2O2?+?OH → H2O?+?HO2, a key reaction in hydrogen combustion, as described by the ReaxFF force field. The OH radicals are the products of the self-dissociation of H2O2 and subsequent reactions. We define the chemical-activation energy for a back reaction (BCE a) as the difference between the energy of the products and the average energy of the system. We show that the BCE a and CEa are linearly correlated.  相似文献   
15.
16.
The theory of group classification of differential equations is analyzed, substantially extended and enhanced based on the new notions of conditional equivalence group and normalized class of differential equations. Effective new techniques are proposed. Using these, we exhaustively describe admissible point transformations in classes of nonlinear (1+1)-dimensional Schrödinger equations, in particular, in the class of nonlinear (1+1)-dimensional Schrödinger equations with modular nonlinearities and potentials and some subclasses thereof. We then carry out a complete group classification in this class, representing it as a union of disjoint normalized subclasses and applying a combination of algebraic and compatibility methods. Moreover, we introduce the complete classification of (1+2)-dimensional cubic Schrödinger equations with potentials. The proposed approach can be applied to studying symmetry properties of a wide range of differential equations.  相似文献   
17.
Polyaniline nanofiber films were fabricated on the surface of stainless steel wire via a controllable and simple electrophoretic deposition route from a nonaqueous colloidal suspension consisting of polyaniline nanofibers. The prepared coating material was then characterized by field emission scanning electron microscopy equipped with energy dispersive spectroscopy and elemental mapping analysis. The fabricated polyaniline film-coated stainless steel wire was then utilized as an effective and novel sorbent phase for solid-phase microextraction of tamoxifen for subsequent gas chromatography/flame ionization detection of this anticancer drug. Parameters consisting of the temperature, extraction time, salt concentration, agitation speed, pH, temperature and time of desorption were studied and optimized using a one-at-a-time strategy. Under the optimum conditions, detection limit (S/N = 3), the limit of quantification (10/3 limit of detection), linear dynamic range, repeatability and reproducibility values of 0.51 μg L−1, 1.7 μg L−1, 2–1,130 μg L−1, 5.7% and 8.6% were attained, respectively. The prepared fiber can preserve 90% of its efficacy after 20 consecutive cycles, demonstrating the suitable thermal stability and cyclability of the proposed solid-phase microextraction coating material for the determination of tamoxifen by gas chromatography/flame ionization detection. The route was effectively utilized to determine tamoxifen in urine samples, with relative recoveries ranging from 89 to 106%.  相似文献   
18.
Multi-dimensional vortex modes of a quasi-simple wave solution is presented. These are constructed on the basis of vortex modes for ideal simple waves. A version of 2D Burgers equation is derived which is the same as that obtained for sound quasi-simple waves if neglecting the last term of the latter. Some solutions are explained in physical detail which have a localized traveling behavior. A numerical simulation is shown to support the obtained analytical solutions.  相似文献   
19.
The kinetics of the permanganic oxidation process of some straight chain amino acids in moderately concentrated sulfuric acid medium have been investigated using a spectrophotometric technique. Conclusive evidences have proven autocatalytic activity of Mn(II) for these reactions. It is determined that even and odd effects of the number carbon atom in a carbon chain are annihilated when it's the number of carbon atoms is increased more than of three in a noncatalytic oxidation pathway. Thus, rate constants belonging to glycine, l ‐α‐amino‐n‐butyric acid, l ‐norleucine, and l ‐α‐amino‐n‐heptanoic acid satisfy Taft's equation involving the induction factor in the noncatalytic pathway, whereas l ‐α‐amino‐n‐heptanoic acid has an odd number of carbon atom in its chain carbon. On the other hand, in the catalytic pathway, rate constants satisfy Taft' equation including inductive and steric factors, when rate constants belonging to amino acids with an even number of carbon atoms are separated from those with an odd number of carbon atoms. The oxidation process of amino acids in the noncatalytic pathway and those with the even number of carbon atoms in the carbon chain in the catalytic pathway speeds up by an increase in the length of chain that is accompanied with an increase in the carbon chain's electron‐donating characteristic. On the other hand, an increase in the length of the carbon chain is accompanied with more steric hindrance, which counteracts its electron‐donating character, thereby decreasing reaction rate in the catalytic pathway. Finally, amino acid–Mn(II) complexes were studied using a density functional theory method. Results obtained show that such a complex is less stable than reactants, namely it is formed in an endothermic reaction. The number and strength of hydrogen bonding belonging to amino acid is more than those of the amino acid–Mn(II) complex. Besides, it has been illustrated that natural bond orbital analysis and molecular orbital calculations satisfy the findings.  相似文献   
20.
The kinetics and mechanism of the gas-phase reactions between hydroxy methyl radical (CH(2)OH) or methoxy radical (CH(3)O) with hydroproxy radical (HO(2)) have been theoretically investigated on their lowest singlet and triplet surfaces. Our investigations indicate the presence of one deep potential well on the singlet surface of each of these systems that play crucial roles on their kinetics. We have shown that the major products of CH(2)OH + HO(2) system are HCOOH, H(2)O, H(2)O(2), and CH(2)O and for CH(3)O + HO(2) system are CH(3)OH and O(2). Multichannel RRKM-TST calculations have been carried out to calculate the individual rate constants for those channels proceed through the formation of activated adducts on the singlet surfaces. The rate constants for direct hydrogen abstraction reactions on the singlet and triplet surfaces were calculated by means of direct-dynamics canonical variational transition-state theory with small curvature approximation for the tunneling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号