首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1581篇
  免费   56篇
  国内免费   2篇
化学   1330篇
晶体学   22篇
力学   12篇
数学   77篇
物理学   198篇
  2023年   12篇
  2022年   18篇
  2021年   26篇
  2020年   20篇
  2019年   29篇
  2018年   20篇
  2017年   17篇
  2016年   34篇
  2015年   25篇
  2014年   40篇
  2013年   87篇
  2012年   76篇
  2011年   105篇
  2010年   48篇
  2009年   49篇
  2008年   116篇
  2007年   116篇
  2006年   105篇
  2005年   144篇
  2004年   97篇
  2003年   67篇
  2002年   70篇
  2001年   24篇
  2000年   19篇
  1999年   10篇
  1998年   24篇
  1997年   15篇
  1996年   26篇
  1995年   11篇
  1994年   12篇
  1993年   7篇
  1992年   5篇
  1991年   8篇
  1990年   4篇
  1989年   11篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   12篇
  1984年   14篇
  1983年   6篇
  1982年   20篇
  1981年   10篇
  1980年   17篇
  1979年   6篇
  1978年   12篇
  1977年   8篇
  1976年   5篇
  1975年   5篇
  1974年   6篇
排序方式: 共有1639条查询结果,搜索用时 0 毫秒
31.
Penning ionization electron spectroscopy and CNDO/S calculations have been successfully applied to the analyses of the UV photoelectron spectra of 2- and 2,5-bistrimethylsilylthiophene and 2-t-butylthiophene. The relative intensities of the π type bands are greatly enhanced in the Penning spectra compared with those of the UV photoelectron spectra.  相似文献   
32.
The structure and dioxygen-reactivity of copper(I) complexes R supported by N,N-bis(6-methylpyridin-2-ylmethyl)amine tridentate ligands L2R[R (N-alkyl substituent)=-CH2Ph (Bn), -CH2CH2Ph (Phe) and -CH2CHPh2(PhePh)] have been examined and compared with those of copper(I) complex (Phe) of N,N-bis[2-(pyridin-2-yl)ethyl]amine tridentate ligand L1(Phe) and copper(I) complex (Phe) of N,N-bis(pyridin-2-ylmethyl)amine tridentate ligand L3(Phe). Copper(I) complexes (Phe) and (PhePh) exhibited a distorted trigonal pyramidal structure involving a d-pi interaction with an eta1-binding mode between the metal ion and one of the ortho-carbon atoms of the phenyl group of the N-alkyl substituent [-CH2CH2Ph (Phe) and -CH2CHPh2(PhePh)]. The strength of the d-pi interaction in (Phe) and (PhePh) was weaker than that of the d-pi interaction with an eta2-binding mode in (Phe) but stronger than that of the eta1 d-pi interaction in (Phe). Existence of a weak d-pi interaction in (Bn) in solution was also explored, but its binding mode was not clear. Redox potentials of the copper(I) complexes (E1/2) were also affected by the supporting ligand; the order of E1/2 was Phe>R>Phe. Thus, the order of electron-donor ability of the ligand is L1Phe相似文献   
33.
We synthesized an ionic amphiphilic diblock copolymer, poly(hydrogenated isoprene)-b-poly(styrenesulfonic acid) (PIp-h2-b-PSS), by living anionic polymerization, and the nanostructure of its monolayer spread on a water surface was directly investigated by the in situ X-ray reflectivity technique. The monolayer of the diblock copolymer on a water surface had a smooth hydrophobic PIp-h2 layer on water and a "carpet"/polymer brush double layer in a hydrophilic sodium polystyrene sulfonate (PSSNa) layer under the water. The surface pressure dependence and PSSNa chain length dependence of the PIp-h2 layer thickness and the brush nanostructure were quantitatively studied. The effect of salt concentration in the subphase was also investigated in aqueous solutions containing 0-2 M NaCl. The salt effect on monolayer structure occurred at around 0.2 M. The thickness of the PSS brush layer decreased at salt concentrations above 0.2 M, while no structural change was observed below 0.2 M. This critical salt concentration is thought to be related to the balance of ionic concentrations inside the brush and in bulk solution.  相似文献   
34.
Hydrogallation of carbon[bond]carbon multiple bonds proceeds in the presence of triethylborane as a radical initiator. Several functionalities do not interfere with this reaction. Resulting alkenyl- and alkylgallium species can be trapped by several electrophiles. Highly regioselective radical addition of an indium hydride reagent to alkynes is also achieved. Various functionalities are tolerant under the reaction conditions. The reaction proceeds with complete anti stereoselectivity. Alkenylindiums obtained via hydroindation can be employed for the following cross-coupling reaction with aryl halides in one pot.  相似文献   
35.
A soluble and self-crosslinkable linear copolymer with pendant epoxy and pyridyl groups was obtained from glycidyl methacrylate (M1) and 2-vinylpyridine (M2) or 2-vinyl-5-ethylpyridine (M2) by the action of azobisisobutyronitrile. The monomer reactivity ratios were determined in tetrahydrofuran at 60°C: r1 = 0.510, r2 = 0.620 with 2-vinylpyridine and r1 = 0.57, r2 = 0.62 with 2-vinyl-5-ethylpyridine. These were consistent with the calculated values with the reported Q and e values for these monomers. The intrinsic viscosities of the copolymers with 2-vinylpyridine and with 2-vinyl-5-ethylpyridine were found to be 0.17–0.19 and 0.26–0.38, respectively, in tetrahydrofuran at 30°C; they were independent of the copolymer composition. The copolymers were amorphous, had no clear melting points, and became insoluble crosslinked polymers under heating without further addition of any curing agents.  相似文献   
36.
Intramolecular pi-pi and CH-pi interactions between the bpy and PR3 ligands of fac-[Re(bpy)(CO)3(PR3)]+ affect their structure, and electrochemical and spectroscopic properties. Intramolecular CH-pi interaction was observed between the alkyl groups on the phosphine ligand (R =nBu, Et) and the bpy ligand, and intramolecular pi-pi and CH-pi interactions were both observed between the aryl group(s) on the phosphorus ligand (R =p-MeOPh, p-MePh, Ph, p-FPh, OPh) and the bpy ligand, while no such interactions were found in the trialkylphosphite complexes (R = OiPr, OEt, OMe). The intramolecular interactions distort the pyridine rings of the bpy ligand as long as 3.7 x 10(-2)A in crystals. Molecular orbital calculations of the bpy ligand suggest that this distortion decreases the energy gap between its pi and pi* orbitals. An absorption band attributed to the pi-pi*(bpy) transition of the distorted rhenium complexes, measured in a KBr pellet, was red-shifted by 1-5 nm compared to the complexes without the distorted bpy ligand. Even in solution, similar red shifts of the pi-pi*(bpy) absorption were observed. The redox potential E1/2(bpy/bpy*-) of the complexes with the trialkylphosphine and triarylphosphine ligand are shifted positively by 110-120 mV and 60-80 mV respectively, compared with those derived from the electron-attracting property of the phosphorus ligand. In contrast with these properties, three nu(CO) IR bands, which are sensitive to the electron density on the central rhenium because of pi-back bonding, were shifted to higher energy, and a Re(I/II)-based oxidation wave was observed at a more positive potential according to the electron-attracting property of the phosphorus ligand.  相似文献   
37.
The cis-dioxo-molybdenum(VI) complexes, [MoO2(L(H))2]2- (1b), [MoO2(L(S))(2)]2- (2b), and [MoO2(L(O))2]2- (3b) (L(H) = cyclohexene-1,2-dithiolate, L(S) = 2,3-dihydro-2H-thiopyran-4,5-dithiolate, and L(O) = 2,3-dihydro-2H-pyran-4,5-dithiolate), with new aliphatic dithiolene ligands were prepared and investigated by infrared (IR) and UV-vis spectroscopic and electrochemical methods. The mono-oxo-molybdenum(IV) complexes, [MoO(L(H))2]2- (1a), [MoO(L(S))2]2- (2a), and [MoO(L(O))2]2- (3a), were further characterized by X-ray crystal structural determinations. The IR and resonance Raman spectroscopic studies suggested that these cis-dioxo molybdenum(VI) complexes (1b-3b) had weaker Mo=O bonds than the common Mo(VI)O2 complexes. Complexes 1b-3b also exhibited strong absorption bands in the visible regions assigned as charge-transfer bands from the dithiolene ligands to the cis-MoO2 cores. Because the oxygen atoms of the cis-Mo(VI)O2 cores are relatively nucleophilic, these complexes were unstable in protic solvents and protonation might occur to produce Mo(VI)O(OH), as observed with the oxidized state of arsenite oxidase.  相似文献   
38.
1,1,2,2-Dimethyl-3,6-diphenyl-1,2-disilacyclohexadiene reacts with iron pentacarbonyl or diiron nonacarbonyl to give the corresponding (diene)iron tricarbonyl complex which undergoes novel ring contraction reaction to (η4-1,1-dimethyl-2,5-diphenyl-1-silacyclopentadiene)iron tricarbonyl on thermolysis at 160°C. Similar results were observed with 1,1,2,2-tetramethyl-3,4,5,6-tetraphenyl-1,2-disilacyclohexadiene.  相似文献   
39.
Molecular dynamics simulations of metastable ice VII and cubic ice Ic are carried out in order to examine (1) the ability of commonly used water interaction potentials to reproduce the properties of ices, and (2) the possibility of generating low-density amorphous (LDA) structures by heating ice VII, which is known to transform to LDA at approximately 135 K at normal pressure [S. Klotz, J. M. Besson, G. Hamel, R. J. Nelmes, J. S. Loveday, and W. G. Marshall, Nature (London) 398, 681 (1999)]. We test four simple empirical interaction potentials of water: TIP4P [W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983)], SPC/E [H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. B 91, 6269 (1987)], TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)], and ST2 [F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974)]. We have found that TIP5P ice VII melts at 210 K, TIP4P at 90 K, and SPC/E at 70 K. Only TIP5P water after transition has a structure similar to that of LDA. TIP4P and SPC/E have almost identical structures, dissimilar to any known water or amorphous phases, but upon heating both slowly evolve towards LDA-like structure. ST2 ice VII is remarkably stable up to 430 K. TIP4P and SPC/E predict correctly the cubic ice collapse into a high-density amorphous ice (HDA) at approximately 1 GPa whereas TIP5P remains stable up to approximately 5 GPa. The densities of the simulated ice phases differ significantly, depending on the potential used, and are generally higher than experimental values. The importance of proper treatment of long-range electrostatic interactions is also discussed.  相似文献   
40.
Reaction potential maps (RPM) have been introduced as a new tool for the study of molecular reactivity. The equipotential energy maps, which are created on given planes around a molecule, define reaction contours towards specific counter-reagent models and are evaluated by perturbation theory. Since the calculated interaction energy involves electrostatic, polarization, exchange, and charge transfer energies, the RPM's can be used to predict site selectivity in a variety of chemical reactions. We found that the calculated RPM's of the SCN anion explained well the experimental observations that it reacts at the S atom with soft electrophiles and at the N atom with hard electrophiles. The difference in reactivity between SCN and OCN was clearly shown by the RPM's of these anions. The ambident nucleophilic nature of the NO 2 and the CH2CHO anions was also well represented by their RPM's.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号