首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   735篇
  免费   26篇
  国内免费   3篇
化学   627篇
晶体学   8篇
力学   10篇
数学   48篇
物理学   71篇
  2024年   1篇
  2023年   5篇
  2022年   7篇
  2021年   8篇
  2020年   10篇
  2019年   8篇
  2018年   9篇
  2017年   4篇
  2016年   21篇
  2015年   16篇
  2014年   16篇
  2013年   35篇
  2012年   62篇
  2011年   67篇
  2010年   23篇
  2009年   32篇
  2008年   46篇
  2007年   56篇
  2006年   55篇
  2005年   70篇
  2004年   75篇
  2003年   42篇
  2002年   34篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1997年   5篇
  1996年   6篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1991年   3篇
  1990年   3篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
排序方式: 共有764条查询结果,搜索用时 312 毫秒
731.
Current experimental vitreous substitutes only replace the physical functions of the natural vitreous humor. Removal of the native vitreous disrupts oxygen homeostasis in the eye, causing oxidative damage to the lens that likely results in cataract formation. Neither current clinical treatments nor other experimental vitreous substitutes consider the problem of oxidative stress after vitrectomy. To address this problem, biomimetic hydrogels are prepared by free radical polymerization of poly(ethylene glycol) methacrylate and poly(ethylene glycol) diacrylate. These hydrogels have similar mechanical and optical properties to the vitreous. The hydrogels are injectable through small‐gauge needles and demonstrate in vitro biocompatibility with human retinal and lens epithelial cells. The hydrogels and added vitamin C, an antioxidant, show a synergistic effect in protecting ocular cells against reactive oxygen species, which fulfills a chemical function of the natural vitreous. These hydrogels have the potential to prevent post‐vitrectomy cataract formation and reduce the cost of additional surgeries.  相似文献   
732.
Graphite intercalation compounds (GICs) are often used to produce exfoliated or functionalised graphene related materials (GRMs) in a specific solvent. This study explores the formation of the Na-tetrahydrofuran (THF)-GIC and a new ternary system based on dimethylacetamide (DMAc). Detailed comparisons of in situ temperature dependent XRD with TGA-MS and Raman measurements reveal a series of dynamic transformations during heating. Surprisingly, the bulk of the intercalation compound is stable under ambient conditions, trapped between the graphene sheets. The heating process drives a reorganisation of the solvent and Na molecules, then an evaporation of the solvent; however, the solvent loss is arrested by restacking of the graphene layers, leading to trapped solvent bubbles. Eventually, the bubbles rupture, releasing the remaining solvent and creating expanded graphite. These trapped dopants may provide useful property enhancements, but also potentially confound measurements of grafting efficiency in liquid-phase covalent functionalization experiments on 2D materials.  相似文献   
733.
A stimuli responsive linear hydrogen bonding motif, capable of in situ protonation and deprotonation, has been investigated. The interactions of the responsive hydrogen bonding motif with complementary partners were examined through a series of 1H NMR experiments, revealing that the recognition preference of the responsive hydrogen bonding motif in a mixture can be switched between two states.  相似文献   
734.
735.
736.
In the presence of a chiral phosphoramidite ligand, the palladium-catalyzed diboration of allenes can be executed with high enantioselectivity. This reaction provides high levels of selectivity with a range of aromatic and aliphatic allene substrates. Isotopic-labeling experiments, stereodifferentiating reactions, kinetic analysis, and computational experiments suggest that the catalytic cycle proceeds by a mechanism involving rate-determining oxidative addition of the diboron to Pd followed by transfer of both boron groups to the unsaturated substrate. This transfer reaction most likely occurs by coordination and insertion of the more accessible terminal alkene of the allene substrate, by a mechanism that directly provides the eta3 pi-allyl complex in a stereospecific, concerted fashion.  相似文献   
737.
Five nonpeptide, small-molecule inhibitors of the human MDM2-p53 interaction are presented, and each inhibitor represents a new scaffold. The most potent compound exhibited a Ki of 110 +/- 30 nM. These compounds were identified using our multiple protein structure (MPS) method which incorporates protein flexibility into a receptor-based pharmacophore model that identifies appropriate hotspots of binding. Docking the inhibitors with an induced-fit docking protocol suggested that the inhibitors mimicked the three critical binding residues of p53 (Phe19, Trp23, and Leu26). Docking also predicted a new orientation of the scaffolds that more fully fills the binding cleft, enabling the inhibitors to take advantage of additional hydrogen-bonding possibilities not explored by other small molecule inhibitors. One inhibitor in particular was proposed to probe the hydrophobic core of the protein by taking advantage of the flexibility of the binding cleft floor. These results show that the MPS technique is a promising advance for structure-based drug discovery and that the method can truly explore broad chemical space efficiently in the quest to discover potent, small-molecule inhibitors of protein-protein interactions. Our MPS technique is one of very few ensemble-based techniques to be proven through experimental verification of the discovery of new inhibitors.  相似文献   
738.

An international project team (including members from US, Canada and UK) was formed from a number of interested biopharmaceutical companies and regulatory authorities to conduct a cross-organisation collaboration exercise. The results of the first comparison with eight different organisations that used instruments of the same equipment model, the same reagents, and the same methodology has been reported previously [1]. This report represents the addition of other instruments using a different run buffer. The relative migration times were different, as expected, prohibiting a direct comparison between companies. The within-organisation variability was low for both relative migration time (<0.34% RSD% for all companies save one) and the peak area (<5% RSD% for all companies save one) when measuring the purity of a representative IgG sample. The apparent molecular weight of bovine serum albumin was measured with good precision (less than 10% RSD% across all companies) to the theoretical value when all data is utilized (67.5 kDa compared to 66.4 kDa). For a representative IgG sample, the three main components, IgG Light Chain, IgG Non-glycosylated Heavy Chain, and IgG Heavy Chain, could not be separated, specifically the IgG Non-glycosylated Heavy Chain and IgG Heavy Chain. When the IgG Non-glycosylated Heavy Chain and IgG Heavy Chain were combined for all organisations, the fractional peak area for the IgG Light Chain and IgG Non-glycosylated Heavy Chain + IgG Heavy Chain peak also showed excellent agreement, with less than 7.5 and 3.5% RSD%, respectively. The value of this exercise is in demonstrating the reliability of CE for the determination of apparent size of biopharmaceutical proteins. This underpins the appropriate use of such CE data in support of regulatory submissions.

  相似文献   
739.
Solid-phase microextraction (SPME) techniques are equally applicable to both volatile and non-volatile analytes, but the progress in applications to gas-phase separations has outpaced that of liquid-phase separations. The interfacing of SPME to gas chromatographic equipment has been straight-forward, requiring little modification of existing equipment. The requirement of solvent desorption for non-volatile or thermally labile analytes has, however, proven challenging for interfacing SPME with liquid-phase separations. Numerous options to achieve this have been described in the literature over the past decade, with applications in several different areas of analysis. To date, no single strategy or interface device design has proven optimal. During method development analysts must select the most appropriate interfacing technique among the options available. Out of these options three general strategies have emerged: (1) use of a manual injection interface tee; (2) in-tube SPME; and (3) off-line desorption followed by conventional liquid injection. In addition, there has been interest in coupling SPME directly to electrospray ionisation and matrix-assisted laser desorption ionisation (MALDI) for mass spectrometry. Several examples of each of these strategies are reviewed here, and an overview of their use and application is presented.  相似文献   
740.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号