首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   735篇
  免费   26篇
  国内免费   3篇
化学   627篇
晶体学   8篇
力学   10篇
数学   48篇
物理学   71篇
  2024年   1篇
  2023年   5篇
  2022年   7篇
  2021年   8篇
  2020年   10篇
  2019年   8篇
  2018年   9篇
  2017年   4篇
  2016年   21篇
  2015年   16篇
  2014年   16篇
  2013年   35篇
  2012年   62篇
  2011年   67篇
  2010年   23篇
  2009年   32篇
  2008年   46篇
  2007年   56篇
  2006年   55篇
  2005年   70篇
  2004年   75篇
  2003年   42篇
  2002年   34篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1997年   5篇
  1996年   6篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1991年   3篇
  1990年   3篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
排序方式: 共有764条查询结果,搜索用时 171 毫秒
691.
The molecular structures of two carbaboranes, closo-2,3-C(2)B(9)H(11) and nido-2,9-C(2)B(9)H(13), were determined experimentally for the first time using gas-phase electron diffraction (GED). For closo-2,3-C(2)B(9)H(11), a model with C(2)(v)() symmetry was refined to give C-B bond distances ranging 158.3-167.0 pm and B-B distances ranging 177.4-200.0 pm. The structure of nido-2,9-C(2)B(9)H(13) was refined using a model with C(s)() symmetry to give C-B bond lengths ranging 160.3-171.9 pm and B-B lengths ranging 173.0-196.1 pm. Ab initio computations (up to MP2/6-311+G) were also carried out on these and the related nido-7,8-C(2)B(9)H(13), which was not sufficiently stable to allow determination of its molecular structure by GED.  相似文献   
692.
Sieburth SM  O'Hare HK  Xu J  Chen Y  Liu G 《Organic letters》2003,5(11):1859-1861
[reaction: see text] Metalation of a Boc-protected N-silylamine alpha to nitrogen results in migration of the silicon from nitrogen to carbon (reverse aza-Brook rearrangement), yielding an alpha-amino silane. The Boc group acts initially as a metalation-directing group and then to stabilize the nitrogen anion, providing a driving force for the rearrangement. In the presence of (-)-sparteine, the new chiral center is formed in >90% ee from allyl, benzyl, and propargylamines.  相似文献   
693.
Summary The decomposition of the CoII complex of a macrocyclic cyclidene ligand is reported both in solution and when bound to a copolymer support. E.s.r. studies show that the decomposition of the complex in pyridine solution, under an atmosphere of O2, has an estimated half-life of ca. 36 h at 295 K. This suggests that decomposition of the O2 adduct is the second step observed in earlier electronic spectroscopic studies, and infers that the cyclidene O2 adducts are much longer lived than originally thought. The CoII cyclidene complex forms a coordinate bond to the pyridine group of n-butyl methacrylate/4-vinyl pyridine copolymers and the resulting five-coordinate complexes undergo reversible oxygenation. The polymer-supported O2 adducts are much more stable to decomposition than those in the solution phase and have an estimated half-life of ca. 30 days at 295 K. The enhanced stability to decomposition of the complexes in the polymer matrix is attributed to the low mobility of the complexes in the glassy polymer.  相似文献   
694.
Accurate force fields are essential for reproducing the conformational and dynamic behavior of condensed-phase systems. The popular AMBER force field has parameters for monophosphates, but they do not extend well to polyphorylated molecules such as ADP and ATP. This work presents parameters for the partial charges, atom types, bond angles, and torsions in simple polyphosphorylated compounds. The parameters are based on molecular orbital calculations of methyldiphosphate and methyltriphosphate at the RHF/6-31+G* level. The new parameters were fit to the entire potential energy surface (not just minima) with an RMSD of 0.62 kcal/mol. This is exceptional agreement and a significant improvement over the current parameters that produce a potential surface with an RMSD of 7.8 kcal/mol to that of the ab initio calculations. Testing has shown that the parameters are transferable and capable of reproducing the gas-phase conformations of inorganic diphosphate and triphosphate. Also, the parameters are an improvement over existing parameters in the condensed phase as shown by minimizations of ATP bound in several proteins. These parameters are intended for use with the existing AMBER 94/99 force field, and they will permit users to apply AMBER to a wider variety of important enzymatic systems.  相似文献   
695.
The reaction of [NBu(4)](2)[Ni(C(6)F(5))(4)] (1) with solutions of dry HCl(g) in Et(2)O results in the protonolysis of two Nibond;C(6)F(5) bonds giving [NBu(4)](2)[[Ni(C(6)F(5))(2)](2)(mu-Cl)(2)] (2 a) together with the stoichiometrically required amount of C(6)F(5)H. Compound 2 a reacts with AgClO(4) in THF to give cis-[Ni(C(6)F(5))(2)(thf)(2)] (3). Reacting 3 with phosphonium halides, [PPh(3)Me]X, gives dinuclear compounds [PPh(3)Me](2)[[Ni(C(6)F(5))(2)](2)(mu-X)(2)] (X=Br (2 b) or I (2 c)). Solutions of compounds 2 in CH(2)Cl(2) at 0 degrees C do not react with excess CNtBu, but do react with CO (1 atm) to split the bridges and form a series of terminal Ni(II) carbonyl derivatives with general formula Qcis-[Ni(C(6)F(5))(2)X(CO)] (4). The nu(CO) stretching frequencies of 4 in CH(2)Cl(2) solution decrease in the order Cl (2090 cm(-1))>Br (2084 cm(-1))>I (2073 cm(-1)). Compounds 4 revert to the parent dinuclear species 2 on increasing the temperature or under reduced CO pressure. [NBu(4)]cis-[Ni(C(6)F(5))(2)Cl(CO)] (4 a) reacts with AgC(6)F(5) to give [NBu(4)][Ni(C(6)F(5))(3)(CO)] (5, nu(CO)(CH(2)Cl(2))=2070 cm(-1)). Compound 5 is also quantitatively formed ((19)F NMR spectroscopy) by 1:1 reaction of 1 with HCl(Et(2)O) in CO atmosphere. Complex 3 reacts with CO at -78 degrees C to give cis-[Ni(C(6)F(5))(2)(CO)(2)] (6, nu(CO)(CH(2)Cl(2))=2156, 2130 cm(-1)), which easily decomposes by reductive elimination of C(6)F(5)bond;C(6)F(5). Compounds 3 and 6 both react with CNtBu to give trans-[Ni(C(6)F(5))(2)(CNtBu)(2)] (7). The solid-state structures of compounds 3, 4 b, 6, and 7 have been established by X-ray diffraction methods. Complexes 4-6 are rare examples of square-planar Ni(II) carbonyl derivatives.  相似文献   
696.
An improved protocol for reductive amination of carbohydrates is developed. This derivatization facilitates the detection of oligosaccharides in HPLC-UV and mass spectrometric applications by enhancing the signal of the carbohydrates. In this study, reductive amination was achieved using NaBH(OAc)3.This reducing agent is an attractive alternative to the toxic, but extensively used reducing agent, NaBH3CN. Several types of carbohydrates were successfully derivatized using NaBH(OAc)3, and the results obtained from this protocol were compared with those obtained with NaBH3CN. Both reducing agents were equally effective in side-by-side analysis. Two purification strategies (purification by zip-tip and HPLC) were implemented and the instrumental limit of detection of each method was compared. The detection limit was ~1,000 times lower when the purification was done using HPLC, compared to using the zip-tip. Since the derivatization by-products in this protocol are not toxic, MS analysis also could also be performed directly, without purification. The MS/MS data of derivatized and underivatized oligosaccharides were acquired as well. The derivatized oligosaccharides produce more easily interpretable product ions than underivatized oligosaccharides.  相似文献   
697.
Out-of-center "primary" electronic distortions are inherent to the oxide fluoride anions of the early d0 transition metals. In the [NbOF5]2- anion, the Nb5+ moves from the center of the octahedron toward the oxide ligand to form a short Nb=O bond and long trans Nb-F bond. The combined results of single-crystal X-ray diffraction and electronic structure calculations indicate that the primary distortion of the [NbOF5]2- anion is affected by the coordination environment that is created by the three-dimensional extended structure. The formation of bonds between an M(L)4(2+) (M = Cd2+, Cu2+; L = 3-aminopyridine, 4-aminopyridine) cation and the oxide and/or trans-fluoride ligands of the [NbOF5]2- anion weakens the pi component of the Nb=O bond. At the same time, hydrogen bond interactions between the equatorial fluorides and the aminopyridine groups both lengthen the equatorial Nb-F bonds and can further reduce the symmetry of the [NbOF5]2- anion. These combined three-dimensional bond network interactions that serve to lengthen the Nb=O bond and thereby decrease the primary distortion of the [NbOF5]2- anion are illustrated in the structures of three new niobium oxide fluoride phases, [4-apyH]2[Cu(4-apy)4(NbOF5)2] (4-apy = 4-aminopyridine), Cd(3-apy)4NbOF5 (3-apy = 3-aminopyridine), and Cu(3-apy)4NbOF5, that were synthesized and characterized using X-ray diffraction. Crystal data for [4-apyH]2[Cu(4-apy)4(NbOF5)2]: tetragonal, space group /4(1)/ acd (No. 142), with a = 20.8745(8) A, c = 17.2929(9) A, and Z= 8. Cd(3-apy)4NbOF5: tetragonal, space group P4(3) (No. 78), with a = 8.4034(4) A, c = 34.933(3) A, and Z = 4. Cu(3-apy)4NbOF5: monoclinic, space group P2(1)/n (No. 14), with a = 8.822(1) A, b = 16.385(3) A, c = 8.902(1) A, beta = 109.270(3) degrees, and Z = 2.  相似文献   
698.
Solution NMR spin-relaxation experiments were used to compare mus-ms dynamics in RNase A in the apo form and as complexed to the substrate-mimic, pTppAp. The crystal structure of the RNase A/pTppAp complex was determined and demonstrates that this ligand binds at the active site and utilizes established substrate binding sites in its interaction with RNase A. Relaxation-compensated CPMG experiments identify flexible residues in and around the active site in both the apo and pTppAp-bound enzyme. Quantitative analysis of the NMR spin-relaxation dispersion curves show that the time scale of motion in RNase A is unchanged when pTppAp binds and is similar to the time scale for the rate-determining step of the catalytic reaction. Temperature-dependent measurements provide an activation barrier for motion of 5.2 +/- 1.0 kcal/mol and 4.5 +/- 1.2 kcal/mol for the apo and pTppAp forms of RNase A, respectively. These data indicate very similar motion exists in the free and bound enzyme. Additionally, chemical shift data suggests that the magnitude of motion is also similar for these two forms and that it is likely that apo enzyme interconverts to a structure that resembles a ligand-bound form. Likewise, it appears that the bound conformation samples the apo enzyme form even when ligand is present. Taken together the data imply that RNase A is in a preexisting dynamic equilibrium between two conformations that represent the open and closed enzyme forms. These data suggest that ligand binding stabilizes the bound conformer but does not induce it.  相似文献   
699.
The molecular structures of trans-1,2-dichloro-1,2-disilylethene and 1-bromo-1-silylethene have been determined by gas-phase electron diffraction (GED) and ab initio molecular orbital calculations (MP2/6-311G). Both compounds were found to have highly asymmetric coordination around the carbon atoms with [ab initio (r(e))/GED (r(a))] C=C-Cl [117.0/117.0(2) degrees] and C=C-Si [126.2/128.1(1) degrees] in the C(2)(h) structure of trans-1,2-dichloro-1,2-disilylethene and C=C-Br [119.2/120.7(4) degrees] and C=C-Si [125.0/125.0(4) degrees] in the C(s) structure of 1-bromo-1-silylethene. Other important structural parameters for trans-1,2-dichloro-1,2-disilylethene are C=C [135.2/134.5(3) pm], C-Si [189.4/187.9(2) pm], and C-Cl [175.1/174.9(1) pm], and C=C [134.2/133.4(2) pm], C-Si [187.8/187.2(3) pm], and C-Br [191.3/191.0(3) pm] for 1-bromo-1-silylethene. Further ab initio calculations were carried out on CH(2)CRX and trans-(CRX)(2) (R = SiH(3), CH(3), or H; X = H, F, Cl, or Br) to gauge the effects of electron-withdrawing and electron-donating groups on the structures. They reveal some even more distorted structures. The asymmetric appearance of these molecules can largely be accounted for by valence shell electron pair repulsion theory.  相似文献   
700.
Two types of DNA hybridization assays are demonstrated with temperature gradient focusing (TGF) and peptide nucleic acids (PNAs). In TGF, the application of a controlled temperature gradient along the length of a microchannel filled with an appropriate temperature-dependent buffer results in the formation of a gradient in both the electric field and electrophoretic velocity. Ionic species move in this gradient and concentrate at a unique point where the total velocity sums to zero. The first assay is a mixing assay in which PNA is allowed to flow through spatially focused DNA targets within a capillary. The second assay detects single base pair mutations (SBPM) by monitoring the fluorescence intensity of PNA/DNA duplexes as a function of temperature within the capillary. The SBPM analysis can be performed in less than 5 min with 100-fold more dilute analyte compared to conventional UV melting measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号