Acetylcholinesterase (AChE) inhibitors and calcium channel blockers are considered effective therapies for Alzheimer’s disease. AChE plays an essential role in the nervous system by catalyzing the hydrolysis of the neurotransmitter acetylcholine. In this study, the inhibition of the enzyme AChE by Sarcorucinine-D, a pregnane type steroidal alkaloid, was investigated with experimental enzyme kinetics and molecular dynamics (MD) simulation techniques. Kinetics studies showed that Sarcorucinine-D inhibits two cholinesterases—AChE and butyrylcholinesterase (BChE)—noncompetitively, with Ki values of 103.3 and 4.66 µM, respectively. In silico ligand-protein docking and MD simulation studies conducted on AChE predicted that Sarcorucinine-D interacted via hydrophobic interactions and hydrogen bonds with the residues of the active-site gorge of AChE. Sarcorucinine-D was able to relax contractility concentration-dependently in the intestinal smooth muscles of jejunum obtained from rabbits. Not only was the spontaneous spasmogenicity inhibited, but it also suppressed K+-mediated spasmogenicity, indicating an effect via the inhibition of voltage-dependent Ca2+ channels. Sarcorucinine-D could be considered a potential lead molecule based on its properties as a noncompetitive AChE inhibitor and a Ca2+ channel blocker. 相似文献
A new rapid, simple and stereoselective HPLC method for studying the isomerisation of cefditoren pivoxil in bulk and its isomeric purity in dosage form was developed and validated. This kind of isomerisation could form due to the effect of temperature on analyte during the manufacturing process or improper storage of pharmaceutical formulations. The separation between cefditoren pivoxil and cefditoren ∆3 isomer was obtained with resolution not less than 2.00 in the presence of methanol and phosphate buffer at pH 5.20 (70:30, v:v) onto Luna C18 stationary phase within 15 min analysis time. Under the validated stereoselective HPLC conditions, isomeric purity of cefditoren pivoxil was successfully determined in tablets with inter and intra-days relative standard deviation ≤4.6 %.
Novel biopolymer electrolytes based on carboxymethyl kappa-carrageenan (CM?-carrageenan) and ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) have been successfully developed. Strong coordination and hydrogen bonding interaction of [Bmim]Cl with the biopolymer were detected by Fourier transform infrared (FTIR) spectroscopy. The efficient function of [Bmim]Cl as the charge carrier in the system was reflected by electrochemical impedance spectroscopy (EIS) where the highest ionic conductivity (σ) of (5.76 ± 0.20) × 10?3 S cm?1 was achieved at ambient temperature (298 K) upon 30 wt.% of [Bmim]Cl inclusion. X-ray diffraction (XRD) analysis confirmed that the addition of ionic liquid did not alter the prominent amorphous phase of CM?-carrageenan. Analysis of scanning electron microscopy (SEM) proved the strong interaction of [Bmim]Cl with the biopolymer matrix. The highest conducting biopolymer electrolyte showed an electrochemical stability up to 3.0 V, whereas the transference number measurement revealed that ions are the major elements that contribute to the conductivity with 0.970 ion transference number. 相似文献
An efficient, fast, and straightforward procedure for the synthesis of aromatic azides and in situ preparation of 1,2,3-triazoles under mild conditions is described. Aniline derivatives have been treated with task-specific [bmim]NO(2) and [bmim]N(3) ionic liquids to give the related phenyl azides which, on further in situ reaction with 1,3-diketones and ethylacetoacetate, afforded 1,2,3-triazoles in very good to excellent yields in very short reaction time. This procedure, which generates azides followed by azide in situ cycloaddition with diketone, has become an attractive option. In this protocol, [bmim]N(3) is used instead of the highly toxic reagent NaN(3). 相似文献
Derivation of two point spread functions PSFs suitable for infrared thermograms analysis is illustrated, based on two unique approaches, one based on depth decaying limit and one on diffusion limit. Experimental work using PMMA sample with back drilled holes and pulsed thermographic routine is utilized to show the effectiveness of deconvoluting pixel temperature transient history with suggested PSF’s. Synthetic second time derivative thermograms are utilized for comparison and the signal to noise ratio is used as a figure of merit for quantification. 相似文献
First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite \(\hbox {MgXAs}_{2}\) (\(\hbox {X}=\hbox {Si}, \hbox {Ge}\)) have been performed within the density functional theory (DFT) using the full-potential linearized augmented plane wave (FP-LAPW) method. The obtained equilibrium structural parameters are in good agreement with the available experimental data and theoretical results. The calculated band structures reveal a direct energy band gap for the interested compounds. The predicted band gaps using the modified Becke–Johnson (mBJ) exchange approximation are in fairly good agreement with the experimental data. The optical constants such as the dielectric function, refractive index, and the extinction coefficient are calculated and analysed. The independent elastic parameters namely, \(C_{11}\), \(C_{12}\), \(C_{13}\), \(C_{33}\), \(C_{44}\) and \(C_{66 }\) are evaluated. The effects of temperature and pressure on some macroscopic properties of \(\hbox {MgSiAs}_{2}\) and \(\hbox {MgGeAs}_{2}\) are predicted using the quasiharmonic Debye model in which the lattice vibrations are taken into account. 相似文献
We present a spherically symmetric solution of the general relativistic field equations in isotropic coordinates for perfect charged fluid, compatible with a super dense star modeling. The solution is well behaved for all the values of Schwarzschild parameter u lying in the range 0 < u < 0.1727 for the maximum value of charge parameter K = 0.08163. The maximum mass of the fluid distribution is calculated by using stellar surface density as ρb = 4.6888×1014g cm?3. Corresponding to K = 0.08 and umax = 0.1732, the resulting well behaved solution has a maximum mass M = 0.9324M⊙ and radius R = 8.00 and by assuming ρb = 2×1014g cm?3 the solution results a stellar configuration with maximum mass M = 1.43M⊙ and radius Rb = 12.25 km. The maximum mass is found increasing with increasing K up to 0.08. The well behaved class of relativistic stellar models obtained in this work might has astrophysical significance in the study of internal structure of compact star such as neutron star or self-bound strange quark star like Her X-1. 相似文献
In this paper we study interaction between modified cosmic Chaplygin gas and pressureless matter in presence of both bulk and shear viscosities as a model of our Universe. Also we consider variable cosmological constant and investigate some cosmological parameters such as sound speed and time-dependent density. We investigate stability of model by using first order linear perturbation. 相似文献