首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   2篇
化学   121篇
力学   2篇
数学   15篇
物理学   17篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   14篇
  2012年   4篇
  2011年   10篇
  2010年   4篇
  2009年   7篇
  2008年   9篇
  2007年   16篇
  2006年   8篇
  2005年   11篇
  2004年   11篇
  2003年   16篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
151.
Microspheres were prepared using a hydrocarbon-perfluorocarbon solvent extraction process. The effect of the physical properties and the emulsification conditions on the mean microsphere size was investigated. The viscosity of the dispersed and the continuous phase greatly affected the microsphere size. Smaller microspheres were produced at the same mixing intensity when the viscosity of the dispersed phase decreased. Increased continuous phase viscosity reduced the coalescenceof the droplets and hence smaller microspheres were produced. The mean microsphere size first decreased as the volume ratio of the dispersed phase to the continuous phase increased but upon further increase the mean microsphere size increased. The effect of the volume ratio on the microsphere size was linked to the surfactant concentration. The stability of the studied hydrocarbon-in-fluorocarbon emulsion is poor. One reason for the poor stability is the high density difference between the phases. The emulsion droplets were solidified by siphoning part of the emulsion in the fresh continuous phase, which extracted the solvent from the dispersed phase. The effect of emulsion transfer time between the emulsification and solidification steps on the particle size was studied but no significant effect was observedduring the controlled time interval.  相似文献   
152.

Different chain oils (tall, rape seed and mineral oils) have been used as model compounds to evaluate and optimize the applicability of UV-persulphate TOC-analyzer for quantitative determination of forestry oils and to follow the progress of their biodegradability. It was shown, that K 2 S 2 O 8 -UV-oxidation method is not sufficient to oxidize chain oils completely. There were differences in oxidation efficiency between different oils, changing from about 46% measured for tall oil to about 25% observed for rape seed chain oil. The addition of Triton X-100 surfactant up to 2% (w/w) was observed to increase the oxidation efficiency, e.g. to 75% for tall oil. The observations can be explained by assuming that in the presence of surfactant the emulsions are more homogeneous and stable. Optimization using two-level full factorial design (temperature of the oxidation chamber and the amount of persulphate) was studied. The results show that the UV-persulphate-oxidation TOC-analyzer is not suitable method to monitor biodegradability of chain oils.  相似文献   
153.
In this study surface-modified nanofibrillated cellulose (NFC) was used at low levels (0.5 to1.5 wt%) as a reinforcement in a polyvinyl alcohol (PVA) matrix. The modified-NFC–PVA composite films prepared using the solution casting technique showed improved mechanical performance. Birch pulp cellulose was initially modified by allylation using a solvent-free, dry modification method followed by subsequent epoxidation of the allyl groups and finally grinding the pulp to yield epoxy-NFC. In order to obtain optimal mechanical performance, epoxy-NFC with different degrees of substitution was evaluated in the reinforcement of PVA. The addition of 1 wt% epoxy-NFC (degree of substitution, DS 0.07) enhanced the modulus, strength, and strain of pure PVA film by 307, 139 and 23 %, respectively, thus producing the best performing film. The results demonstrate the favourable effect of chemically functionalized NFC on the mechanical properties of polyvinyl alcohol compared to unmodified NFC as reinforcement. In order to improve industrial and economic feasibility, the manufacture of the composite was also done in situ by grinding cellulose directly in PVA to produce the new biocomposite in a one-step process.  相似文献   
154.
The 1H, 13C correlation NMR spectroscopy utilizes JCH couplings in molecules, and provides important structural information from small organic molecules in the form of carbon chemical shifts and carbon-proton connectivities. The full potential of the 1H, 13C correlation NMR spectroscopy has not been realized in the Chemical Weapons Convention (CWC) related verification analyses due to the sample matrix, which usually contains a high amount of non-related compounds obscuring the correlations of the relevant compounds. Here, the results of the application of 1H, 13C, 31P triple-resonance NMR spectroscopy in characterization of OP compounds related to the CWC are presented. With a set of two-dimensional triple-resonance experiments the JHP, JCH and JPC couplings are utilized to map the connectivities of the atoms in OP compounds and to extract the carbon chemical shift information. With the use of the proposed pulse sequences the correlations from the OP compounds can be recorded without significant artifacts from the non-OP compound impurities in the sample. Further selectivity of the observed correlations is achieved with the application of phosphorus band-selective pulse in the pulse sequences to assist the analysis of multiple OP compounds in mixture samples. The use of the triple-resonance experiments in the analysis of a complex sample is shown with a test mixture containing typical scheduled OP compounds, including the characteristic degradation products of nerve agents sarin, soman, and VX. The viability of the approach in verification analysis is demonstrated in the analysis of the 30th OPCW Proficiency Test sample.  相似文献   
155.
Five dinucleating ligands (1-5) and one trinucleating ligand (6) incorporating 1,5,9-triazacyclododecan-3-yloxy groups attached to an aromatic scaffold have been synthesized. The ability of the Zn(2+) complexes of these ligands to promote the transesterification of dinucleoside 3',5'-monophosphates to a 2',3'-cyclic phosphate derived from the 3'-linked nucleoside by release of the 5'-linked nucleoside has been studied over a narrow pH range, from pH 5.8 to 7.2, at 90 degrees C. The dinuclear complexes show marked base moiety selectivity. Among the four dinucleotide 3',5'-phosphates studied, viz. adenylyl-3',5'-adenosine (ApA), adenylyl-3',5'-uridine (ApU), uridylyl-3',5'-adenosine (UpA), and uridylyl-3',5'-uridine (UpU), the dimers containing one uracil base (ApU and UpA) are cleaved up to 2 orders of magnitude more readily than those containing either two uracil bases (UpU) or two adenine bases (ApA). The trinuclear complex (6), however, cleaves UpU as readily as ApU and UpA, while the cleavage of ApA remains slow. UV spectrophotometric and (1)H NMR spectroscopic studies with one of the dinucleating ligands (3) verify binding to the bases of UpU and ApU at less than millimolar concentrations, while no interaction with the base moieties of ApA is observed. With ApU and UpA, one of the Zn(2+)-azacrown moieties in all likelihood anchors the cleaving agent to the uracil base of the substrate, while the other azacrown moiety serves as a catalyst for the phosphodiester transesterification. With UpU, two azacrown moieties are engaged in the base moiety binding. The catalytic activity is, hence, lost, but it can be restored by addition of a third azacrown group on the cleaving agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号