首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   30篇
化学   326篇
晶体学   4篇
力学   3篇
数学   36篇
物理学   37篇
  2023年   15篇
  2022年   20篇
  2021年   20篇
  2020年   30篇
  2019年   25篇
  2018年   10篇
  2017年   6篇
  2016年   19篇
  2015年   15篇
  2014年   20篇
  2013年   12篇
  2012年   30篇
  2011年   37篇
  2010年   18篇
  2009年   13篇
  2008年   19篇
  2007年   16篇
  2006年   8篇
  2005年   8篇
  2004年   10篇
  2003年   3篇
  2002年   8篇
  2001年   2篇
  1999年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1968年   2篇
  1963年   1篇
  1939年   2篇
  1937年   1篇
  1936年   2篇
排序方式: 共有406条查询结果,搜索用时 15 毫秒
11.
Copper(I)-catalyzed 1,3-dipolar cycloaddition reaction of nonfluorescent 3-azidocoumarins and terminal alkynes afforded intense fluorescent 1,2,3-triazole products. The mild condition of this reaction allowed us to construct a large library of pure fluorescent coumarin dyes. Since both azide and alkyne are quite inert to biological systems, this reaction has potential in bioconjugation and bioimaging applications. [reaction: see text]  相似文献   
12.
Despite considerable advances in recent years, challenges in delivery and storage of biological drugs persist and may delay or prohibit their clinical application. Though nanoparticle-based approaches for small molecule drug encapsulation are mature, encapsulation of proteins remains problematic due to destabilization of the protein. Reverse micelles composed of decylmonoacyl glycerol (10MAG) and lauryldimethylamino-N-oxide (LDAO) in low-viscosity alkanes have been shown to preserve the structure and stability of a wide range of biological macromolecules. Here, we present a first step on developing this system as a future platform for storage and delivery of biological drugs by replacing the non-biocompatible alkane solvent with solvents currently used in small molecule delivery systems. Using a novel screening approach, we performed a comprehensive evaluation of the 10MAG/LDAO system using two preparation methods across seven biocompatible solvents with analysis of toxicity and encapsulation efficiency for each solvent. By using an inexpensive hydrophilic small molecule to test a wide range of conditions, we identify optimal solvent properties for further development. We validate the predictions from this screen with preliminary protein encapsulation tests. The insight provided lays the foundation for further development of this system toward long-term room-temperature storage of biologics or toward water-in-oil-in-water biologic delivery systems.  相似文献   
13.
A range of oxobis(phenyl-1,3-butanedione) vanadium(IV) complexes have been successfully synthesized from cheap starting materials and a simple and solvent-free one-pot dry-melt reaction. This direct, straightforward, fast and alternative approach to inorganic synthesis has the potential for a wide range of applications. Analytical studies confirm their successful synthesis, purity and solid-state coordination, and we report the use of such complexes as potential drug candidates for the treatment of cancer. After a 24 hour incubation of A549 lung carcinoma cells with the compounds, they reveal cytotoxicity values elevenfold greater than cisplatin and remain non-toxic towards normal cell types. Additionally, the complexes are stable over a range of physiological pH values and show the potential for interactions with bovine serum albumin.  相似文献   
14.
15.
Herein we report the preparation of a series of Ru(II) complexes featuring α-iminopyridine ligands bearing thioether functionality (NNSR, where R = Me, CH2Ph, Ph). Metallation using [(p-cymene)RuCl]2 permits access to Ru complexes with a κ2-N,N donor set in which the thioether moiety remains uncoordinated. In the presence of a strong field ligand such as acetonitrile or triphenylphosphine, the p-cymene moiety is displaced, and the ligand adopts a κ3-N,N,S binding mode. These complexes are characterized using a combination of solution and solid state methods, including the crystal structure of [(NNSMe)Ru (NCMe)2Cl]Cl. The κ2-N,N-Ru(II) complexes are shown to serve as efficient precatalysts for the oxidation of sec-phenethyl alcohol at modest loadings (alcohol: Ru = 20:1), using a variety of external oxidants and solvents. The complex bearing an S-Ph donor was found to be the most active oxidation catalyst of those surveyed, suggesting that the thioether donor plays an active role in the catalytic cycle.  相似文献   
16.
Herein the synthesis of an Fmoc/OtBu orthogonally protected iodotyrosine derivative is reported. This has been achieved via a simple two-step process in an overall 58% yield from commercially available Fmoc-Tyr(tBu)-OH. The Fmoc/OtBu orthogonally protected iodotyrosine was also shown to be amenable to Suzuki-Miyaura cross-coupling to deliver a novel bi-aryl tyrosine derivative.  相似文献   
17.
Despite an emerging catalogue of collective behaviours in communities of homogeneously distributed cell-like objects, microscale protocell colonies with spatially segregated populations have received minimal attention. Here, we use microfluidics to fabricate Janus-like calcium alginate hydrogel microspheres with spatially partitioned populations of enzyme-containing inorganic colloidosomes and investigate their potential as integrated platforms for domain-mediated chemical communication and programmable protocell-matrix dynamics. Diffusive chemical signalling within the segregated communities gives rise to increased initial enzyme kinetics compared with a homogeneous distribution of protocells. We employ competing enzyme-mediated hydrogel crosslinking and decrosslinking reactions in different domains of the partitioned colonies to undertake selective expulsion of a specific protocell population from the community. Our results offer new possibilities for the design and construction of spatially organized cytomimetic consortia capable of endogenous chemical processing and protocell-environment interactivity.  相似文献   
18.
Capillary gel electrophoresis (CGE) and polymer-based microelectrophoretic platforms were investigated to analyze low-abundant point mutations in certain gene fragments with high diagnostic value for colorectal cancers. The electrophoretic separations were carried out on single-stranded DNA (ssDNA) products generated from an allele-specific ligation assay (ligase detection reaction, LDR), which was used to screen for a single base mutation at codon 12 in the K-ras oncogene. The presence of the mutation generated a ssDNA fragment that was >40 base pairs (bp) in length, while the primers used for the ligation assay were <30 bp in length. Various separation matrices were investigated, with the success of the matrix assessed by its ability to resolve the ligation product from the large molar excess of unligated primers when the mutant allele was lower in copy number compared to the wild-type allele. Using CGE, LDR product models (44 and 51 bp) could be analyzed in a cross-linked polyacrylamide gel with a 1000-fold molar excess of LDR primers (25 bp) in approximately 45 min. However, when using linear polyacrylamide gels, these same fragments could not be detected due to significant electrokinetic biasing during injection. A poly(methylmethacrylate) (PMMA) microchip of 3.5 cm effective column length was used with a 4% linear polyacrylamide gel to analyze the products generated from an LDR. When the reaction contained a 100-fold molar excess of wild-type DNA compared to a G12.2D mutant allele, the 44 bp ligation product could be effectively resolved from unligated primers in under 120 s, nearly 17 times faster than the CGE format. In addition, sample cleanup was simplified using the microchip format by not requiring desalting of the LDR prior to loading.  相似文献   
19.
Epitaxial growth of MOF‐on‐MOF composite is an evolving research topic in the quest for multifunctional materials. In previously reported methods, the core–shell MOFs were synthesized via a stepwise strategy that involved growing the shell‐MOFs on top of the preformed core‐MOFs with matched lattice parameters. However, the inconvenient stepwise synthesis and the strict lattice‐matching requirement have limited the preparation of core–shell MOFs. Herein, we demonstrate that hybrid core–shell MOFs with mismatching lattices can be synthesized under the guidance of nucleation kinetic analysis. A series of MOF composites with mesoporous core and microporous shell were constructed and characterized by optical microscopy, powder X‐ray diffraction, gas sorption measurement, and scanning electron microscopy. Isoreticular expansion of microporous shells and orthogonal modification of the core was realized to produce multifunctional MOF composites, which acted as size selective catalysts for olefin epoxidation with high activity and selectivity.  相似文献   
20.
A noninvasive in situ fluorescence-based method for the quantification of the photosensitizer chloroaluminum disulfonated phthalocyanine was compared to the highly accurate but nonreal time ex vivo spectrofluorometry method. Our in vivo fluorescence technique is designed to allow real-time assessment of photosensitizer in tumor and normal tissues and therefore temporally optimal light delivery. Laser-induced fluorescence was used to measure photosensitizer concentration from multiple microscopic regions of tissue. Ex vivo chemical extraction was used to quantify photosensitizer concentration in the same volume of tissue. The amount of photosensitizer in the vascular and/or parenchymal compartments of skeletal muscle and liver was determined by quantifying fluorescent signal in vivo, ex vivo and after blood removal. Confocal microscopy was used to spatially document photosensitizer localization 30 min and 24 h after delivery. While a linear correlation can exist between the fluorescence intensity measured by our fiber-optic bundle system and actual tissue concentration, temporal changes to this calibration line exist as the photosensitizer changes its partitioning fraction between the blood (vasculature) and the tissue parenchyma. In situ photosensitizer fluorescence microsampling (dosimetry) systems can be performed in real time and linearly correlated to actual tissue concentration with minimal intertissue variance. Tissue-specific differences may require temporal alterations in the calibration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号