首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20272篇
  免费   2907篇
  国内免费   2023篇
化学   13771篇
晶体学   259篇
力学   1234篇
综合类   186篇
数学   2203篇
物理学   7549篇
  2025年   6篇
  2024年   183篇
  2023年   457篇
  2022年   710篇
  2021年   820篇
  2020年   952篇
  2019年   862篇
  2018年   585篇
  2017年   578篇
  2016年   879篇
  2015年   828篇
  2014年   1038篇
  2013年   1329篇
  2012年   1656篇
  2011年   1664篇
  2010年   1130篇
  2009年   1079篇
  2008年   1207篇
  2007年   1138篇
  2006年   1051篇
  2005年   851篇
  2004年   706篇
  2003年   585篇
  2002年   515篇
  2001年   416篇
  2000年   416篇
  1999年   490篇
  1998年   395篇
  1997年   346篇
  1996年   344篇
  1995年   304篇
  1994年   278篇
  1993年   251篇
  1992年   215篇
  1991年   192篇
  1990年   180篇
  1989年   132篇
  1988年   92篇
  1987年   70篇
  1986年   83篇
  1985年   56篇
  1984年   31篇
  1983年   37篇
  1982年   35篇
  1981年   15篇
  1980年   7篇
  1979年   4篇
  1976年   1篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
In the current study, the phytochemical constituents of volatile organic compounds (VOCs) obtained from Sida rhombifolia L. were identified by GC-FID and GC-MS analysis. A total of 73 volatile organic compounds were identified. The major components of S. rhombifolia VOCs were identified as palmitic acid (21.56%), phytol (7.02%), 6,10,14-trimethyl-2-pentadecanone (6.30%), oleic acid (5.48%), 2-pentyl-furan (5.23%), and linoleic acid (3.21%). The VOCs are rich in fatty acids (32.50%), olefine aldehyde (9.59%), ketone (9.41%), enol (9.02%), aldehyde (8.63%), and ketene (6.41%). The antioxidant capacity of S. rhombifolia VOCs was determined by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing/antioxidant power (FRAP) methods with butylated hydroxytoluene (BHT) and Trolox as standard. The VOCs showed dose-dependent antioxidant activity with IC50 (50% inhibitory concentration) values of 5.48 ± 0.024 and 1.47 ± 0.012 mg/mL for DPPH and ABTS assays, respectively. FRAP antioxidant capacity was 83.10 ± 1.66 mM/g. The results show that the VOCs distilled from S. rhombifolia have a moderate antioxidant property that can be utilized as a natural botanical supplement or an antioxidant.  相似文献   
42.
43.
Zhejiang Ophiopogon japonicus (ZOJ) is a specific variety of Ophiopogon japonicus with characteristic steroidal saponins and homoisoflavonoids, which are also main pharmacodynamic constituents with clinical effects, including curing inflammation and cardiovascular diseases. However, few analysis methods were applied to simultaneously and quantitatively determine two kinds of its constituents, and hazardous organic solvents are mostly used for extraction. In this study, a new validated simultaneous extraction and determination method for four characteristic steroidal saponins and homoisoflavonoids in ZOJ was established by ionic liquid–ultrasonic extraction (IL-UAE) combined with HPLC-DAD-ELSD analysis, which can be used for the quality control of ZOJ. Chromatographic separation was performed with a DAD wavelength at 296 nm, and the ELSD parameters of the drift tube temperature (DTT), atomizer temperature (AT), and nitrogen gas pressure (NGP) were set at 20% heating power, 70 °C, and 25 psi, respectively. The optimal IL-UAE conditions were 1 mol/L [Bmim]CF3SO3 aqueous solution, a liquid–material ratio of 40 mL/g, and an ultrasonic time of 60 min. The proposed method is reliable, reproducible, and accurate, which were verified with real sample assays. Consequently, this work will be helpful for the quality control of ZOJ. It can also present a promising reference for the simultaneous extraction and determination of different kinds of constituents in other medicinal plants.  相似文献   
44.
Two-dimensional (2D) transition metal dichalcogenide nanosheets (TMDC NSs) have attracted growing interest due to their unique structure and properties. Although various methods have been developed to prepare TMDC NSs, there is still a great need for a novel strategy combining simplicity, generality, and high efficiency. In this study, we developed a novel polymer-assisted ball milling method for the efficient preparation of TMDC NSs with small sizes. The use of polymers can enhance the interaction of milling balls and TMDC materials, facilitate the exfoliation process, and prevent the exfoliated nanosheets from aggregating. The WSe2 NSs prepared by carboxymethyl cellulose sodium (CMC)-assisted ball milling have small lateral sizes (8~40 nm) with a high yield (~60%). The influence of the experimental conditions (polymer, milling time, and rotation speed) on the size and yield of the nanosheets was studied. Moreover, the present approach is also effective in producing other TMDC NSs, such as MoS2, WS2, and MoSe2. This study demonstrates that polymer-assisted ball milling is a simple, general, and effective method for the preparation of small-sized TMDC NSs.  相似文献   
45.
The overall electrochemical performance of natural graphite is intimately associated with the solid electrolyte interphase (SEI) layer developed on its surface. To suppress the interfacial electrolyte decomposition reactions and the high irreversible capacity loss relating to the SEI formation on a natural graphite (NG) surface, we propose a new design of the artificial SEI by the functional molecular cross-linking framework layer, which was synthesized by grafting acrylic acid (AA) and N,N′−methylenebisacrylamide (MBAA) via an in situ polymerization reaction. The functional polymeric framework constructs a robust covalent bonding onto the NG surface with —COOH and facilitates Li+ conduction owing to the effect of the —CONH group, contributing to forming an SEI layer of excellent stability, flexibility, and compactness. From all the benefits, the initial coulombic efficiency, rate performance, and cycling performance of the graphite anode are remarkably improved. In addition, the full cell using the LiNi0.5Co0.2Mn0.3O2 cathode against the modified NG anode exhibits much-prolonged cycle life with a capacity retention of 82.75% after 500 cycles, significantly higher than the cell using the pristine NG anode. The mechanisms relating to the artificial SEI growth on the graphite surface were analyzed. This strategy provides an efficient and feasible approach to the surface optimization for the NG anode in LIBs.  相似文献   
46.
The shuttle effect is understood to be the most significant issue that needs to be solved to improve the performance of lithium–sulfur batteries. In this study, ultrathin two-dimensional Fe–Co bimetallic oxide nanosheets were prepared using graphene as a template, which could rapidly catalyze the conversion of polysulfides and inhibit the shuttle effect. Additionally, such ultrathin nanostructures based on graphene provided sufficient active sites and fast diffusion pathways for lithium ions. Taking into account the aforementioned benefits, the ultrathin two-dimensional Fe–Co bimetallic oxide nanosheets modified separator assembled lithium–sulfur batteries delivered an incredible capacity of 1044.2 mAh g−1 at 1 C and retained an excellent reversible capacity of 859.4 mAh g−1 after 100 cycles. Even under high loading, it still achieved high area capacity and good cycle stability (92.6% capacity retention).  相似文献   
47.
Determining the different surfaces of oxide nanocrystals is key in developing structure–property relations. In many cases, only surface geometry is considered while ignoring the influence of surroundings, such as ubiquitous water on the surface. Here we apply 17O solid-state NMR spectroscopy to explore the facet differences of morphology-controlled ceria nanocrystals considering both geometry and water adsorption. Tri-coordinated oxygen ions at the 1st layer of ceria (111), (110), and (100) facets exhibit distinct 17O NMR shifts at dry surfaces while these 17O NMR parameters vary in the presence of water, indicating its non-negligible effects on the oxide surface. Thus, the interaction between water and oxide surfaces and its impact on the chemical environment should be considered in future studies, and solid-state NMR spectroscopy is a sensitive approach for obtaining such information. The work provides new insights into elucidating the surface chemistry of oxide nanomaterials.

Both atomic geometry and the influence of surroundings (e.g., exogenously coordinated water) are key issues for determining the chemical environment of oxide surfaces, whereas the latter is usually ignored and should be considered in future studies.  相似文献   
48.
The diphosphine complexes cis- or trans- Created by potrace 1.16, written by Peter Selinger 2001-2019 PtCl2(P((CH2)n)3P Created by potrace 1.16, written by Peter Selinger 2001-2019 ) (n = b/12, c/14, d/16, e/18) are demetalated by MC Created by potrace 1.16, written by Peter Selinger 2001-2019 X nucleophiles to give the title compounds (P((CH2)n)3)P (3b–e, 91–71%). These “empty cages” react with PdCl2 or PtCl2 sources to afford trans- Created by potrace 1.16, written by Peter Selinger 2001-2019 MCl2(P((CH2)n)3P Created by potrace 1.16, written by Peter Selinger 2001-2019 ). Low temperature 31P NMR spectra of 3b and c show two rapidly equilibrating species (3b, 86 : 14; 3c, 97 : 3), assigned based upon computational data to in,in (major) and out,out isomers. These interconvert by homeomorphic isomerizations, akin to turning articles of clothing inside out (3b/c: ΔH 7.3/8.2 kcal mol−1, ΔS −19.4/−11.8 eu, minor to major). At 150 °C, 3b, c, e epimerize to (60–51) : (40–49) mixtures of (in,in/out,out) : in,out isomers, which are separated via the bis(borane) adducts 3b, c, e·2BH3. The configurational stabilities of in,out-3b, c, e preclude phosphorus inversion in the interconversion of in,in and out,out isomers. Low temperature 31P NMR spectra of in,out-3b, c reveal degenerate in,out/out,in homeomorphic isomerizations (ΔGTc 12.1, 8.5 kcal mol−1). When (in,in/out,out)-3b, c, e are crystallized, out,out isomers are obtained, despite the preference for in,in isomers in solution. The lattice structures are analyzed, and the D3 symmetry of out,out-3c enables a particularly favorable packing motif. Similarly, (in,in/out,out)-3c, e·2BH3 crystallize in out,out conformations, the former with a cycloalkane solvent guest inside.

It’s not a magic trick. Molecules can turn themselves inside out, just like articles of clothing or other familiar household objects. This behavior is demonstrated for the title compounds through a combination of synthesis, rate, and NMR studies.  相似文献   
49.
Transarterial chemoembolization (TACE) is the first-line treatment for unresectable intermediate-stage hepatocellular carcinoma (HCC). It is of high clinical significance to explore the synergistic effect of TACE with antiangiogenic inhibitors and the molecular mechanisms involved. This study determined that glucose, but not other analyzed nutrients, offered significant protection against cell death induced by sorafenib, as indicated by glucose deprivation sensitizing cells to sorafenib-induced cell death. Next, this synergistic effect was found to be specific to sorafenib, not to lenvatinib or the chemotherapeutic drugs cisplatin and doxorubicin. Mechanistically, sorafenib-induced mitophagy, as indicated by PINK1 accumulation, increased the phospho-poly-ubiquitination modification, accelerated mitochondrial membrane protein and mitochondrial DNA degradation, and increased the amount of mitochondrion-localized mKeima-Red engulfed by lysosomes. Among several E3 ubiquitin ligases tested, SIAH1 was found to be essential for inducing mitophagy; that is, SIAH1 silencing markedly repressed mitophagy and sensitized cells to sorafenib-induced death. Notably, the combined treatment of glucose restriction and sorafenib abolished ATP generation and mitophagy, which led to a high cell death rate. Oligomycin and antimycin, inhibitors of electron transport chain complexes, mimicked the synergistic effect of sorafenib with glucose restriction to promote cell death mediated via mitophagy inhibition. Finally, inhibition of the glucose transporter by canagliflozin (a clinically available drug used for type-II diabetes) effectively synergized with sorafenib to induce HCC cell death in vitro and to inhibit xenograft tumor growth in vivo. This study demonstrates that simultaneous treatment with sorafenib and glucose restriction is an effective approach to treat HCC, suggesting a promising combination strategy such as transarterial sorafenib-embolization (TASE) for the treatment of unresectable HCC.Subject terms: Liver cancer, Mitophagy, Apoptosis  相似文献   
50.
In this paper, detailed comparisons of the driving force in thermodynamics and intrinsic force in the kinetics of 1,2-dihydropyridine and 1,4-dihydropyridine isomers of PNAH, HEH, and PYH in hydride transfer reactions are made. For 1,2-PNAH and 1,4-PNAH, the values of the thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 60.50 and 61.90 kcal/mol, 27.92 and 26.34 kcal/mol, and 44.21 and 44.12 kcal/mol, respectively. For 1,2-HEH and 1,4-HEH, the values of the thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 63.40 and 65.00 kcal/mol, 31.68 and 34.96 kcal/mol, and 47.54 and 49.98 kcal/mol, respectively. For 1,2-PYH and 1,4-PYH, the order of thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 69.90 and 72.60 kcal/mol, 33.06 and 25.74 kcal/mol, and 51.48 and 49.17 kcal/mol, respectively. It is not difficult to find that thermodynamically favorable structures are not necessarily kinetically favorable. In addition, according to the analysis of thermo-kinetic parameters, 1,4-PNAH, 1,2-HEH, and 1,4-PYH have a strong hydride-donating ability in actual chemical reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号