首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4835篇
  免费   256篇
  国内免费   32篇
化学   3313篇
晶体学   57篇
力学   169篇
数学   754篇
物理学   830篇
  2023年   34篇
  2022年   137篇
  2021年   143篇
  2020年   98篇
  2019年   188篇
  2018年   151篇
  2017年   107篇
  2016年   241篇
  2015年   154篇
  2014年   246篇
  2013年   477篇
  2012年   280篇
  2011年   292篇
  2010年   207篇
  2009年   199篇
  2008年   213篇
  2007年   202篇
  2006年   201篇
  2005年   167篇
  2004年   153篇
  2003年   129篇
  2002年   171篇
  2001年   72篇
  2000年   109篇
  1999年   63篇
  1998年   40篇
  1997年   46篇
  1996年   35篇
  1995年   36篇
  1994年   35篇
  1993年   37篇
  1992年   32篇
  1991年   23篇
  1990年   16篇
  1989年   29篇
  1988年   27篇
  1987年   20篇
  1986年   17篇
  1985年   29篇
  1984年   24篇
  1983年   21篇
  1982年   20篇
  1981年   26篇
  1980年   16篇
  1979年   15篇
  1978年   15篇
  1977年   10篇
  1976年   13篇
  1975年   16篇
  1974年   9篇
排序方式: 共有5123条查询结果,搜索用时 15 毫秒
111.
Normetanephrine is a marker for pheochromocytoma, a rare catecholamine-secreting and neuroendocrine tumor, that arises from sympathetic and parasympathetic paraganglia. In this work, a novel carbon/chitosan electrode paste was used for sensitive voltammetric determination of normetanephrine and dopamine in the presence of ascorbic acid and uric acid. The modified electrode has shown an increase in the effective area of up to 68%, well-separated oxidation peaks, and an excellent electrocatalytic activity. The electrochemical response characteristics were investigated by cyclic and differential pulse voltammetry. Interestingly, high sensitivity and selectivity in the linear range of normetanephrine, dopamine, ascorbic acid, and uric acid concentrations were observed. The present method was applied in the urine sample and satisfactory results were obtained showing that this electrode is very suitable in pharmaceutical and clinical preparations.  相似文献   
112.
113.
114.
115.
The monomer 3‐allyl‐5‐(phenylazo)‐2‐thioxothiazolidine‐4‐one (HL) was prepared by the reaction of allyl rhodanine with aniline through diazo‐coupling reaction. Reaction of HL with Ni(II) or Co(II) salts gave polymer complexes ( 1 – 8 ) with general stoichiometries [M(HL)(Cl)2(OH2)2]n, [M(HL)(O2SO2)(OH2)2]n, [M(L)(O2NO)(H2O)2]n and [M(L)(O2CCH3)(H2O)2]n (where M = Ni(II) or Co(II)). The structures of the polymer complexes were identified using elemental analysis, infrared and electronic spectra, molar conductance, magnetic susceptibility, X‐ray diffraction and thermogravimetric analysis. The interaction between the polymer complexes and calf thymus DNA showed a hypochromism effect. HL and its polymer complexes were tested against bacterial and fungal species. Co(II) polymer complex 2 is the most effective against Klebsiella pneumoniae and is more active than penicillin. The results showed that Ni(II) polymer complex 5 is a good antibacterial agent against Staphylococcus aureus and Pseudomonas aeruginosa. Molecular docking was used to predict the binding between the monomer with the receptors of prostate cancer (PDB code: 2Q7L Hormone) and breast cancer (PDB code: 1JNX Gene regulation). Coats–Redfern and Horowitz–Metzger methods were applied for calculating the thermodynamic parameters of HL and its polymer complexes. The thermal activation energy of decomposition for HL is higher than that for the polymer complexes.  相似文献   
116.
The efficient, 12–14 step (LLS) total synthesis of (?)‐halenaquinone has been achieved. Key steps in the synthetic sequence include: (a) proline sulfonamide‐catalyzed, Yamada–Otani reaction to establish the C6 all‐carbon quaternary stereocenter, (b) multiple, novel palladium‐mediated oxidative cyclizations to introduce the furan moiety, and (c) oxidative Bergman cyclization to form the final quinone ring.  相似文献   
117.
Zeolite crystals having faujasite-type (FAU) topology in the nanometer range were first synthesized from amorphous rice husk ash at a low temperature of 363 K under autogenous pressure. Following this, surface functionalization of the produced zeolite with 5-amino-3-thiomethyl 1H-pyrazole-4-carbonitrile (pyrazole; Py) was carried out by two different methods, namely liquefied-period adsorption of Py (Py/Yim) and a flexible ligand method (Py/Yss). The latter provides a larger amount of Py formed into as-made zeolite-Y. The sorption of Fe(III) onto Py/NaY afforded large meso–macroporosity introduced by the aggregation–assembly between Fe(III)Py complexes and NaY zeolite, which was typically evidenced for Fe(III)Py/Yss. The materials were characterized by XRD, FT-IR spectroscopy, thermal analysis (TGA) and porous structure by N2 adsorption–desorption at 77 K. The XRD evaluation showed that the zeolite structure was managed right after adding Fe(III) to Py/Y, although a change in intensity of the zeolite reflections on complex formation was noticed. The FT-IR spectrum of Fe(III)Py/Yss exhibited two bands at 3594 and 3542 cm?1 assigned to bridging hydroxyl groups associated with a Brönsted site, which did not exist in the spectra of Fe(III)Py/Yim and Fe(III)-exchanged as-made NaY zeolite. This effect was ascribed to the induced greater electronegativity of the ligand towards Fe(III) species in dissociation of water molecules, producing acidic protons that are potential Brönsted acid sites. It was also evident that the Fe(III) adsorption capacity on Py/Yss is greater than on as-made NaY zeolite and Py/Yim, owing most likely to the increasing concentration of the incorporating Py ligand which leads to an increase in the number of binding sites. The Fe(III) adsorption onto Py/Yss was well described by the pseudo-second-order kinetic model. Density functional theory (B3LYP/6-311G*) was performed to understanding the interaction mode of the ligand and complex with zeolite. The QSPR was calculated depending on the optimization geometries, frontier molecular orbitals, thermodynamic parameters, and global chemical reactivates, which were discussed for the studied compounds. The HOMOs, LUMOs and molecular electrostatic potentials were plotted to elucidate the interaction manner of the tested compounds with the zeolite. The nonlinear optical properties were elucidated via 1st and 2nd hyper-polarizabilities. The auto-degradation behavior was predicted for the complex, based on the ionization optional and bond dissociation enthalpy. The interactions between Py and Fe(III)Py with the zeolite surface have been described with molecular dynamics using a Monte Carlo simulation.  相似文献   
118.
A new Schiff base ligand (HL) was prepared via a condensation reaction of quinoline‐2‐carboxaldhyde with 2‐aminophenol in a molar ratio of 1:1. Its transition metal mixed ligand complexes with 1,10‐phenanthroline (1,10‐phen) as co‐ligand were also synthesized in a 1:1:1 ratio. HL and its mixed ligand complexes were characterized using elemental analysis, infrared, 1H NMR, mass and UV–visible spectroscopies, molar conductance, magnetic measurements, solid reflectance, thermal analysis, electron spin resonance and X‐ray diffraction. Molar conductance measurements showed that all complexes have an electrolytic nature, except Cd(II) complex. From elemental and spectral data, the formulae [M(L)(1,10‐phen)(H2O)]Clx?nH2O (where M = Cr(III) (x = n = 2), Mn(II) and Ni(II) (x = 1, n = 2), Fe(III) (x = n = 2), Co(II), Cu(II) and Zn(II) (x = 1, n = 2)) and [Cd(L)(1,10‐phen)Cl]?3H2O for the metal complexes have been proposed. The geometric structures of complexes were found to be octahedral. Powder X‐ray diffraction reflected the crystalline nature of the complexes; however, the Schiff base is amorphous. HL and its mixed ligand complexes were screened against Gram‐positive bacteria (Streptococcus pneumoniae and Bacillus subtilis) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli). Antifungal activity was determined against Aspergillus fumigatus and Candida albicans, the data showing that most complexes had activity less than that of the Schiff base while Mn(II), Fe(III) and Ni(II) complexes showed no significant antifungal activity. The anticancer activity of HL and its metal complexes was also studied against breast and colon cell lines. The metal complexes showed IC50 higher than that of HL, especially the Cu(II) complex which showed the highest IC50 against breast cell line.  相似文献   
119.
Series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes were prepared with tetradentate Schiff base ligand derived by condensation of 2‐aminophenol with dibenzoylmethane. The novel Schiff base H2L (2–2′‐((1Z,1Z’)‐(1,3‐diphenyl propane‐1,3 diylidene) bis (azanylylidene) diphenol) and its binary metal complexes were characterized by physicochemical procedures i.e. elemental analysis, FT‐IR, UV–Vis, thermal analyses (TGA/DTG), mass spectrometry, magnetic susceptibility and conductometric measurements. On the basis of these studies, an octahedral geometry for all these complexes was proposed expect Ni(II) complex which had tetrahedral geometry. Molar conductivity values revealed that the complexes were electrolytes except Mn(II), Zn(II) and Cd(II) complexes were non electrolytes. The ligand bound to the metal ions via two azomethine N and two phenolic OH as indicated from the IR and 1H NMR spectral study. The molecular and electronic structures of H2L and its zinc complex were optimized theoretically and the quantum chemical parameters were calculated. The antimicrobial activity against a number of bacterial organisms as Streptococcus pneumonia, Bacillus Subtilis, Pseudomonas aeruginosa and Escherichia coli and fungi as Aspergillus fumigates, Syncephalastrum racemosum, Geotricum candidum and Candida albicans by disk diffusion method were screened for the Schiff base and its complexes. The Cd(II) complex has potent antimicrobial activity. Anticancer activity of the Schiff base ligand and its metal complexes were evaluated in human cancer (MCF‐7 cells viability). The Cr(III) complex exhibited higher activity than other complexes and ligand. Molecular docking was used to predict the binding between Schiff base ligand (H2L) and its Zn(II) complex and the receptors of RNA of amikacin antibiotic (4P20) and human‐DNA‐Topo I complex (1SC7). The docking study provided useful structural information for inhibition studies.  相似文献   
120.
In this work, we report a simple, efficient and green protocol for the synthesis of dihydropyrimidinones/thiones (products of Biginelli reaction) by the use of white marble as an effective heterogeneous catalyst. Short reaction times, high product yields, simple processing procedure and reusability of the catalyst are the superior characteristics of this protocol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号