首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   9篇
  国内免费   4篇
化学   237篇
晶体学   3篇
力学   35篇
数学   43篇
物理学   76篇
  2023年   3篇
  2022年   12篇
  2021年   16篇
  2020年   27篇
  2019年   21篇
  2018年   35篇
  2017年   13篇
  2016年   25篇
  2015年   15篇
  2014年   32篇
  2013年   35篇
  2012年   39篇
  2011年   35篇
  2010年   19篇
  2009年   11篇
  2008年   10篇
  2007年   12篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   9篇
  2002年   3篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有394条查询结果,搜索用时 0 毫秒
81.
The interactions of two organoplatinum complexes, [Pt(C^N)Cl(dppa)], 1, and [Pt(C^N)Cl(dppm)], 2 (C^N = N(1), C(2')-chelated, deprotonated 2-phenylpyridine, dppa = bis(diphenylphosphino)amine, dppm = bis(diphenylphosphino)methane), as antitumor agents, with bovine serum albumin (BSA) and human serum albumin (HSA) have been studied by fluorescence and UV-vis absorption spectroscopic techniques at pH 7.40. The quenching constants and binding parameters (binding constants and number of binding sites) were determined by fluorescence quenching method. The obtained results revealed that there is a strong binding interaction between the ligands and proteins. The calculated thermodynamic parameters (ΔG, ΔH, and ΔS) confirmed that the binding reaction is mainly entropy-driven, and hydrophobic forces played a major role in the reaction. The displacement experiment shows that these Pt complexes can bind to the subdomain IIA (site I) of albumin. Moreover, synchronous fluorescence spectroscopy studies revealed some changes in the local polarity around the tryptophan residues. Finally, the distance, r, between donor (serum albumin) and acceptor (Pt complexes) was obtained according to F?rster theory of nonradiation energy transfer.  相似文献   
82.
The present study deals with preparation and optimization of a novel chitosan hydrogel‐based matrix by suspension cross‐linking method for controlled release of Depo‐Medrol. The controlled release of Depo‐Medrol for effective Rheumatoid arthritis disease has become an imperative field in the drug delivery system. In this context, it was intended to optimize loading circumstances by experimental design and also study the release kinetics of Depo‐Medrol entrapped in the chitosan matrix in order to obtain maximal efficiency for drug loading. The optimum concentrations of chitosan (2.5 g), glutaraldehyde (3.05 μL) and Depo‐Medrol (0.1 mg) were set up to achieve the highest value of drug loaded and the most sustained release from the chitosan matrix. In vitro monitoring of drug release kinetic using high‐performance liquid chromatography showed that 73% of the Depo‐Medrol was released within 120 min, whereas remained drug was released during the next 67 h. High correlation between first‐order and Higuchi's kinetic models indicates a controlled diffusion of Depo‐Medrol through the surrounding media. Moreover, recovery capacity >82% and entrapment efficiency of 58–88% were achieved under optimal conditions. Therefore, the new synthesized Depo Medrol–chitosan is an applicable appliance for arthritis therapy by slow release mechanism. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
83.
84.
85.
We study the statistical mechanics of binary systems under the gravitational interaction of the Modified Newtonian Dynamics (MOND) in three-dimensional space. Considering the binary systems in the microcanonical and canonical ensembles, we show that in the microcanonical systems, unlike the Newtonian gravity, there is a sharp phase transition, with a high-temperature homogeneous phase and a low-temperature clumped binary one. Defining an order parameter in the canonical systems, we find a smoother phase transition and identify the corresponding critical temperature in terms of the physical parameters of the binary system.  相似文献   
86.
The preparation and electrocatalytic behavior of glassy carbon electrodes modified with three different cobalt porphyrin complexes were investigated. The electrocatalytic ability of the modified electrodes for the reduction of dioxygen to hydrogen peroxide and water in air‐saturated aqueous solutions was examined by cyclic voltammetry and chronoamperometry techniques. The porphyrin‐adsorbed glassy carbon electrodes possess excellent electrocatalytic abilities for dioxygen reduction with overpotential about 0.5 V lower than that at a plain glassy carbon electrode. The experimental parameters were optimized and the mechanism of the catalytic process was discussed. The possible effects of the electron‐donating properties of groups in the meso‐position of the porphyrin ring were investigated.  相似文献   
87.
Mechanism of removal of lead from silicate glass containing 68.5 wt% PbO by 0.5 N HNO3 was investigated by incorporation of the chemical-analyses/weight-loss data into shrinking-core model (SCM) and minimization of the difference. Scanning electron microscopy (SEM), emission spectrometry with inductively coupled plasma (ICP), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS) were used to determine the compositional changes of the lead-silicate glass (LSG) samples. Dual inter-diffusion chemical reaction mechanisms having respective activation energies of 83.49 and 47.80 kJ/mol dominated the deleading process.  相似文献   
88.
89.
Laminar stagnation flow, axisymmetrically yet obliquely impinging on a moving circular cylinder, is formulated as an exact solution of the Navier–Stokes equations. Axial velocity is time‐dependent, whereas the surface transpiration is uniform and steady. The impinging free stream is steady with a strain rate k?. The governing parameters are the stagnation‐flow Reynolds number Re=k?a2/2ν, and the dimensionless transpiration S=U0/k?a. An exact solution is obtained by reducing the Navier–Stokes equations to a system of differential equations governed by Reynolds number and the dimensionless wall transpiration rate, S. The system of Boundary Value Problems is then solved by the shooting method and by deploying a finite difference scheme as a semi‐similar solution. The results are presented for velocity similarity functions, axial shear stress and stream functions for a variety of cases. Shear stresses in all cases increase with the increase in Reynolds number and suction rate. The effect of different parameters on the deflection of viscous stagnation circle is also determined. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
90.
Background: Type-one diabetes (T1D), a chronic autoimmune disease with marked inflammatory responses, is associated with infertility complications and implications. Based on the anti-diabetic, antioxidant, and anti-hyperlipidemic potential of Portulaca oleracea (PO), this study aimed to evaluate the protective effect of this plant extract on streptozotocin-induced type-I-diabetes-associated reproductive system dysfunction and inflammation. Methods: Male rats were randomly divided into four experimental groups: control, diabetic, and treatment/s (PO extract at 100 or 300 mg/kg/daily). Then food and water consumption, body, testis and epididymis weights, histopathological evaluation, seminiferous tubules diameter, sperm count and motility, glucose levels, sex hormones, and inflammatory and oxidative stress markers were evaluated. Results: Our results showed that streptozotocin-induced diabetes significantly increased food and water consumption; increased glucose, MDA, TGF-β1, and TNF-α levels; and decreased the seminiferous tubules diameter, sperm count and motility, levels of LH, testosterone, total thiol, VEGF, and SOD activity. Interestingly, PO extract (phytochemically characterized by using liquid chromatography–mass spectrometry to detect bioactive molecules) significantly ameliorated these parameters and histopathological indexes’ damage in rats. Conclusion. Even if more preclinical assessments are needed to better characterize the mechanism/s of action, the results of this study will pave the way for the rational use of PO on diabetic-associated clinical complications and implications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号