首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   18篇
  国内免费   4篇
化学   234篇
晶体学   3篇
力学   35篇
数学   43篇
物理学   76篇
  2023年   3篇
  2022年   10篇
  2021年   15篇
  2020年   27篇
  2019年   21篇
  2018年   35篇
  2017年   13篇
  2016年   25篇
  2015年   15篇
  2014年   32篇
  2013年   35篇
  2012年   39篇
  2011年   35篇
  2010年   19篇
  2009年   11篇
  2008年   10篇
  2007年   12篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   9篇
  2002年   3篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有391条查询结果,搜索用时 15 毫秒
11.
The present study deals with preparation and optimization of a novel chitosan hydrogel‐based matrix by suspension cross‐linking method for controlled release of Depo‐Medrol. The controlled release of Depo‐Medrol for effective Rheumatoid arthritis disease has become an imperative field in the drug delivery system. In this context, it was intended to optimize loading circumstances by experimental design and also study the release kinetics of Depo‐Medrol entrapped in the chitosan matrix in order to obtain maximal efficiency for drug loading. The optimum concentrations of chitosan (2.5 g), glutaraldehyde (3.05 μL) and Depo‐Medrol (0.1 mg) were set up to achieve the highest value of drug loaded and the most sustained release from the chitosan matrix. In vitro monitoring of drug release kinetic using high‐performance liquid chromatography showed that 73% of the Depo‐Medrol was released within 120 min, whereas remained drug was released during the next 67 h. High correlation between first‐order and Higuchi's kinetic models indicates a controlled diffusion of Depo‐Medrol through the surrounding media. Moreover, recovery capacity >82% and entrapment efficiency of 58–88% were achieved under optimal conditions. Therefore, the new synthesized Depo Medrol–chitosan is an applicable appliance for arthritis therapy by slow release mechanism. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
12.
13.
In recent years, gold nanoparticles (Au‐NPs) have been taken into consideration in nanomedicine due to their excellent biocompatibility, chemical stability and promising optical properties. In this research, podophyllotoxin conjugated with gold nanoparticles (Au‐NPs‐POT) was synthesized and the conjugation of POT with Au‐NPs was confirmed using scanning electron microscopy, mass spectrometry and Fourier transform infrared spectroscopy. The anticancer effects of the product on preclinical models of lung, colon and breast cancers were investigated using MTT test. The analyses showed a direct dose–response relationship. It was found that higher concentrations of POT have more positive effects on the inhibition of cancer cell growth. At POT concentrations of 1, 2.5, 5, 7.5, 10, 15 and 20 ng ml?1, approximately 50% of the growth of colorectal, lung and breast cancer cell lines was inhibited, while similar results were obtained in the presence of 1, 2, 3, 4 and 5 μg ml?1 Au‐NPs‐POT. Au‐NPs‐POT exhibited the lowest cytotoxicity due to the presence of POT. The anticancer feature of Au‐NPs‐POT proved the potential to develop better anticancer therapeutics and to open new avenues for treatment of cancers.  相似文献   
14.
In this work, the films of poly(ether-block-amide) (Pebax 1657) and hydrophilic/hydrophobic silica nanoparticles (0–10 wt%) were coated on a poly(vinyl chloride) (PVC) ultrafiltration membrane to form new mixed matrix composite membranes (MMCMs) for CO2/N2 separation. The membranes were characterized by SEM, FTIR, DSC and XRD. Successful formation of a non-porous defect-free dense top layer with ~4 μm of thickness and also uniform dispersion of silica nanoparticles up to 8 wt% loading in Pebax matrix were confirmed by SEM images. The gas permeation results showed an increase in the permeance of all gases and an increase in ideal CO2/N2 selectivity with the increase in silica nanoparticle contents. Comparison between the incorporation of hydrophilic and hydrophobic silica nanoparticle into Pebax matrix revealed that the great enhancement of CO2 solubility is the key factor for the performance improvement of Pebax + silica nanoparticle membranes. The best separation performance of the hydrophilic silica nanoparticle-incorporated Pebax/PVC membrane for pure gases (at 1 bar and 25 °C) was obtained with a CO2 permeability of 124 barrer and an ideal CO2/N2 selectivity of 76, i.e., 63 and 35% higher than those of neat Pebax membrane, respectively. The corresponding values for hydrophobic silica nanoparticle-incorporated Pebax/PVC membrane were 107 barrer for CO2 permeability and 61 for ideal CO2/N2 selectivity. Also the performances of MMCMs improved upon pressure increase (1–10 bar) owing to the shift in plasticizing effect of CO2 towards the higher pressures. In addition, an increase in permeabilities with a decrease in ideal selectivity was observed upon temperature increase (25–50 °C) due to the intensification of chain mobility.  相似文献   
15.
NiFe2O4 magnetic nanoparticles (MNPs) were synthesized, characterized and applied as an air‐stable, inexpensive and magnetically separable nanocatalyst for the synthesis of structurally diverse sulfides. Efficient methodologies were developed for the synthesis of unsymmetric diaryl sulfides via odourless and one‐pot reactions of triphenyltin chloride/S8 or arylboronic acid/S8 as thiolating agents with aryl halides or nitroarenes as starting materials in the presence of base (K2CO3 or NaOH) and NiFe2O4 MNPs as a catalyst in water or poly (ethylene glycol) as solvent at 80–110 °C. Free from ligand and the unpleasant smell of thiols and with the use of magnetically reusable nanocatalyst, green solvents and commercially available and cheap sulfur source and starting materials, these methods are more eco‐friendly and practical than available protocols for the synthesis of sulfides.  相似文献   
16.
In this work, a magnetic hybrid dichromate nanocomposite with triphenylphosphine surface modified superparamagnetic iron oxide nanoparticles (SPIONs) as a recyclable nanocatalyst was designed, prepared and characterized by Fourier transform infrared spectroscopy (FT‐IR) spectra, X‐ray diffraction (XRD) pattern analysis, vibrating sample magnetometer (VSM) curves, X‐ray fluorescence (XRF) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images and dynamic light scattering (DLS) analysis. Then, it was used in a green and efficient procedure for one‐pot multicomponent synthesis of polyhydroquinoline derivatives by the condensation of aldehydes, dimedone or 1,3‐cyclohexadione, ethyl acetoacetate and ammonium acetate. This protocol includes some new and exceptional advantages such as short reaction times, low catalyst loading, high yields, solvent‐free and room temperature conditions, easy separation and reusability of the catalyst.  相似文献   
17.
18.
Research on Chemical Intermediates - In this study, a kind of magnetic Fe3O4@mTiO2-GO (where m was shorted mesoporous) hybrids with core–shell nano-structure for controlled dual targeted drug...  相似文献   
19.
We study Koszul homology over local Gorenstein rings. It is well known that if an ideal is strongly Cohen–Macaulay the Koszul homology algebra satisfies Poincaré duality. We prove a version of this duality which holds for all ideals and allows us to give two criteria for an ideal to be strongly Cohen–Macaulay. The first can be compared to a result of Hartshorne and Ogus; the second is a generalization of a result of Herzog, Simis, and Vasconcelos using sliding depth.  相似文献   
20.
Seven novel complexes (C1–C7) were synthesized by the interaction between Cu(I) metal cation, L1, L2, L3, X and PPh3, where L1–L3 are derivatives of ((pyridine-2-ylmethylene)amino)phenol imine ligands and X = Cl, Br, I, NCS. All the complexes were characterized using infrared, 1H NMR and 31P NMR spectroscopies. The crystal structures of C1–C7 were also determined using single-crystal X-ray diffraction. The organization of the crystal structures and the intermolecular interactions are discussed. The supramolecular assemblies are driven by cooperative π…π interactions and hydrogen bonds, followed by CH…π linkages. The potential anticancer effect of C1–C7 was assessed for human glioblastoma cells using several anticancer experiments, which showed that these complexes have marked anticancer property against U87 cells. It was also found that the minimum and maximum anticancer effects are shown by C3- and C4-treated samples, respectively. Furthermore, theoretical approaches were used to investigate the nature of metal–ligand interactions which suggest a closed-shell and electrostatic character for Cu…N, Cu…P and Cu…X bonds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号