全文获取类型
收费全文 | 9305篇 |
免费 | 1402篇 |
国内免费 | 766篇 |
专业分类
化学 | 6255篇 |
晶体学 | 93篇 |
力学 | 588篇 |
综合类 | 45篇 |
数学 | 1121篇 |
物理学 | 3371篇 |
出版年
2024年 | 25篇 |
2023年 | 179篇 |
2022年 | 330篇 |
2021年 | 345篇 |
2020年 | 395篇 |
2019年 | 350篇 |
2018年 | 319篇 |
2017年 | 290篇 |
2016年 | 463篇 |
2015年 | 488篇 |
2014年 | 521篇 |
2013年 | 645篇 |
2012年 | 857篇 |
2011年 | 826篇 |
2010年 | 584篇 |
2009年 | 542篇 |
2008年 | 580篇 |
2007年 | 446篇 |
2006年 | 493篇 |
2005年 | 362篇 |
2004年 | 283篇 |
2003年 | 226篇 |
2002年 | 178篇 |
2001年 | 145篇 |
2000年 | 159篇 |
1999年 | 186篇 |
1998年 | 156篇 |
1997年 | 134篇 |
1996年 | 137篇 |
1995年 | 114篇 |
1994年 | 104篇 |
1993年 | 85篇 |
1992年 | 80篇 |
1991年 | 76篇 |
1990年 | 45篇 |
1989年 | 38篇 |
1988年 | 39篇 |
1987年 | 35篇 |
1986年 | 29篇 |
1985年 | 21篇 |
1984年 | 20篇 |
1983年 | 20篇 |
1982年 | 9篇 |
1981年 | 14篇 |
1980年 | 9篇 |
1977年 | 6篇 |
1976年 | 10篇 |
1975年 | 9篇 |
1973年 | 8篇 |
1972年 | 6篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The chemical reactions and kinetics of the catalytic coupling reaction of carbon monoxide to diethyl oxalate were studied in the presence of hydrogen over a supported palladium catalyst in the gaseous phase at the typical coupling reaction conditions. The experiments were performed in a continuous flow fixed-bed reactor. The results indicated that hydrogen only reacts with ethyl nitrite to form ethanol, and kinetic studies revealed that the rate-determining step is the surface reaction of adsorbed hydrogen and the ethoxy radical (EtO-). A kinetic model is proposed and a comparison of the observed and calculated conversions showed that the rate expressions are of rather high confidence. 相似文献
12.
Summary The equilibrium mechanical behaviour of weak diepoxide-monoepoxide-diamine networks, prepared with an excess of diamine and measured in the rubbery state, was compared with theoretical predictions obtained by using the theory of branching processes. The experimental equilibrium moduli fit well the shape of theoretical curves over a broad range of crosslinking density regardless of whether the contribution by trapped entanglements is considered or not. The data fit equally well the theoretical dependence for the front factor A = 1 without entanglement contribution and forA = (f
e
- 2)/f
e
, (f
e
is the average effective functionality of a junction) with an entanglement contribution based on the contact probability between any two units within elastically active network chains (Langley).Dedicated to Prof. Dr.G. Rehage on the occasion of his 60th birthday.With 5 figures 相似文献
13.
A direct entry to spirocycles with low to moderate regioselectivity was achieved by triphenylphosphine-catalyzed [3 + 2]-cycloaddition of active exo-methylenecycles (1) and ethyl 2,3-butadienoate (2). The regioselectivity of the reaction was greatly improved by using the bulky tert-butyl ester of the 2,3-butadienoate (5). The regioselectivity of the reaction was further enhanced by using the tert-butyl 2-butynoate as the substrate. This protocol provided an efficient entry to the skeleton of spirocarbocycles, especially spiro[4.n]alkanes. 相似文献
14.
历史文物建筑修复与保护的首要步骤是对建材构件进行成分解析。但成型的混凝土构件成分复杂,传统技术难以直接分析。微区X射线荧光光谱具有速度快、无需前处理、可获得大面积高分辨的元素成像等优势,可用于此类混合物的原位分析。本文采用束斑为20μm的微区X射线荧光光谱仪,扫描成型混凝土构件以获得混合成分的元素分布图,结合基本参数定量法,对上海地区典型历史建筑混泥土构件进行元素定量。分析结果有效地解析了混凝土构建中骨料和凝胶材料的成分和含量,鉴别了涂层成分,解析了拌混工艺,鉴别了局部污染元素和致劣元素并分析致劣原因,为历史建筑修复材料选配、拌混工艺选择、除污及保护性预防劣化提供了科学的数据支撑。 相似文献
15.
Ke Yang Zhi Li Chong Liu Yunjian Li Qingyue Hu Mazen Elsaid Bijin Li Jayabrata Das Yanfeng Dang Debabrata Maiti Haibo Ge 《Chemical science》2022,13(20):5938
The transient directing group (TDG) strategy allowed long awaited access to the direct β-C(sp3)–H functionalization of unmasked aliphatic aldehydes via palladium catalysis. However, the current techniques are restricted to terminal methyl functionalization, limiting their structural scopes and applicability. Herein, we report the development of a direct Pd-catalyzed methylene β-C–H arylation of linear unmasked aldehydes by using 3-amino-3-methylbutanoic acid as a TDG and 2-pyridone as an external ligand. Density functional theory calculations provided insights into the reaction mechanism and shed light on the roles of the external and transient directing ligands in the catalytic transformation.Aliphatic aldehydes are among the most common structural units in organic and medicinal chemistry research. Direct C–H functionalization has enabled efficient and site-selective derivatization of aliphatic aldehydes.Simple aliphatic functional groups enrich the skeletal backbones of many natural products, pharmaceuticals, and other industrial materials, influencing the utility and applications of these substances and dictating their reactivity and synthetic modification pathways. Aliphatic aldehydes are some of the most ubiquitous structural units in organic materials.1 Their relevance in nature and industry alike, combined with their reactivity and synthetic versatility, attracted much attention from the synthetic organic and medicinal chemistry communities over the years (Fig. 1).2 Efficient means to the functionalization of these molecules have always been highly sought after.Open in a separate windowFig. 1Select aliphatic aldehyde-containing medicines and biologically active molecules.Traditionally, scientists have utilized the high reactivity of the aldehyde moiety in derivatizing a variety of functional groups by the means of red-ox and nucleophilic addition reactions. The resourceful moiety was also notoriously used to install functional groups at the α-position via condensation and substitution pathways.3 Although β-functionalization is just as robust, it has generally been more restrictive as it often requires the use of α,β-unsaturated aldehydes.4,5 Hence, transition metal catalysis emerged as a powerful tool to access β-functionalization in saturated aldehydes.6 Most original examples of metal-catalyzed β-C–H functionalization of aliphatic aldehydes required the masking of aldehydes into better metal coordinating units since free unmasked aldehydes could not form stable intermediates with metals like palladium on their own.7 Although the masking of the aldehyde moiety into an oxime, for example, enabled the formation of stable 5-membered palladacycles, affording β-functionalized products, this system requires the installation of the directing group prior to the functionalization, as well as the subsequent unmasking upon the reaction completion, compromising the step economy and atom efficiency of the overall process.8 Besides, some masking and unmasking protocols might not be compatible with select substrates, especially ones rich in functional groups. As a result, the development of a one-step direct approach to the β-C–H functionalization of free aliphatic aldehydes was a demanding target for synthetic chemists.α-Amino acids have been demonstrated as effective transient directing groups (TDGs) in the remote functionalization of o-alkyl benzaldehydes and aliphatic ketones by the Yu group in 2016.9 Shortly after, our group disclosed the first report on the direct β-C–H arylation of aliphatic aldehydes using 3-aminopropanoic acid or 3-amino-3-methylbutanoic acid as a TDG.10 The TDG was found to play a similar role to that of the oxime directing group by binding to the substrate via reversible imine formation, upon which, it assists in the assembly of a stable palladacycle, effectively functionalizing the β-position.11 Since the binding of the TDG is reversible and temporary, it is automatically removed upon functionalization, yielding an efficient and step-economic transformation. This work was succeeded by many other reports that expanded the reaction and the TDG scopes.12–14 However, this system suffers from a significant restriction that demanded resolution; only substitution of methyl C–H bonds of linear aldehydes was made possible via this approach (Scheme 1a–e). The steric limitations caused by incorporating additional groups at the β-carbon proved to compromise the formation of the palladacycle intermediate, rendering the subsequent functionalization a difficult task.12Open in a separate windowScheme 1Pd-catalyzed β-C–H bond functionalization of aliphatic aldehydes enabled by transient directing groups.Encouraged by the recent surge in use of 2-pyridone ligands to stabilize palladacycle intermediates,15,16 we have successfully developed the first example of TDG-enabled Pd-catalyzed methylene β-C–H arylation in primary aldehydes via the assistance of 2-pyridones as external ligands (Scheme 1f). The incorporation of 2-pyridones proved to lower the activation energy of the C–H bond cleavage, promoting the formation of the intermediate palladacycles even in the presence of relatively bulky β-substituents.17 This key advancement significantly broadens the structural scopes and applications of this process and promises future asymmetric possibilities, perhaps via the use of a chiral TDG or external ligand or both. Notably, a closely related work from Yu''s group was published at almost the same time.18We commenced our investigation of the reaction parameters by employing n-pentanal (1a) as an unbiased linear aldehyde and 4-iodoanisole (2a) in the presence of catalytic Pd(OAc)2 and stoichiometric AgTFA, alongside 3-amino-3-methylbutanoic acid (TDG1) and 3-(trifluoromethyl)-5-nitropyridin-2-ol (L1) at 100 °C (ii) sources proved Pd(OAc)2 to be the optimal catalyst, while Pd(TFA)2, PdCl2 and PdBr2 provided only moderate yields (entries 10–12). Notably, a significantly lower yield was observed in the absence of the 2-pyridone ligand, and no desired product was isolated altogether in the absence of the TDG (entries 13 and 14). The incorporation of 15 mol% Pd catalyst was deemed necessary after only 55% yield of 3a was obtained when 10 mol% loading of Pd(OAc)2 was instead used (entry 15).Optimization of reaction conditionsa
Open in a separate windowaReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), Pd source (15 mol%), AgTFA (0.3 mmol), L1, TDG1, solvent (2.0 mL), 100 °C, 12 h. Yields are based on 1a, determined by 1H-NMR using dibromomethane as an internal standard.bIsolated yield.cPd(OAc)2 (10 mol%).To advance our optimization of the reaction conditions, a variety of 2-pyridones and TDGs were tested (Scheme 2). Originally, pyridine-2(1H)-one (L2) was examined as the external ligand, but it only yielded the product (3a) in 7% NMR yield. Similarly, other mono- and di-substituted 2-pyridone ligands (L3–L10) also produced low yields, fixating L1 as the optimal external ligand. Next, various α- and β-amino acids (TDG1–10) were evaluated, yet TDG1 persisted as the optimal transient directing group. These amino acid screening results also suggest that a [5,6]-bicyclic palladium species is likely the key intermediate in this protocol since only β-amino acids were found to provide appreciable yields, whereas α-amino acids failed to yield more than trace amounts of the product. The supremacy of TDG1 when compared to other β-amino acids is presumably due to the Thorpe–Ingold effect that perhaps helps facilitate the C–H bond cleavage and stabilize the [5,6]-bicyclic intermediate further.Open in a separate windowScheme 2Optimization of 2-pyridone ligands and transient directing groups.With the optimized reaction conditions in hand, substrate scope study of primary aliphatic aldehydes was subsequently carried out (Scheme 3). A variety of linear primary aliphatic aldehydes bearing different chain lengths provided the corresponding products 3a–e in good yields. Notably, relatively sterically hindered methylene C–H bonds were also functionalized effectively (3f and 3g). Additionally, 4-phenylbutanal gave rise to the desired product 3h in a highly site-selective manner, suggesting that functionalization of the methylene β-C–H bond is predominantly favored over the more labile benzylic C–H bond. It is noteworthy that the amide group was also well-tolerated and the desired product 3j was isolated in 60% yield. As expected, with n-propanal as the substrate, β-mono- (3k1) and β,β-disubstituted products (3k2) were isolated in 22% and 21% yields respectively. However, in the absence of the key external 2-pyridone ligand, β-monosubstituted product (3k1) was obtained exclusively, albeit with a low yield, indicating preference for functionalizing the β-C(sp3)–H bond of the methyl group over the benzylic methylene group.Open in a separate windowScheme 3Scope of primary aliphatic aldehydes. Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol), Pd(OAc)2 (15 mol%), AgTFA (0.3 mmol), L1 (60 mol%), TDG1 (60 mol%), HFIP (1.8 mL), HOAc (0.2 mL), 100 °C, 12 h. Isolated yields. aL1 (60 mol%) was absent and yields are given in parentheses.Next, substrate scope study on aryl iodides was surveyed (Scheme 4). Iodobenzenes bearing either an electron-donating or electron-withdrawing group at the para-, meta-, or ortho-position were all found compatible with our catalytic system (3l–3ah). Surprisingly, ortho-methyl- and fluoro-substituted aryl iodides afforded the products in only trace amounts. However, aryl iodide with ortho-methoxy group provided the desired product 3ac in a moderate yield. Notably, a distinctive electronic effect pattern was not observed in the process. It should be mentioned that arylated products bearing halogen, ester, and cyano groups could be readily converted to other molecules, which significantly improves the synthetic applicability of the process. Delightfully, aryl iodide-containing natural products like ketoprofen, fenchol and menthol were proven compatible, supplying the corresponding products in moderate yields. Unfortunately, (hetero)aryl iodides including 2-iodopyridine, 3-iodopyridine, 4-iodopyridine and 4-iodo-2-chloropyridine failed to produce the corresponding products. Although our protocol provides a novel and direct pathway to construct β-arylated primary aliphatic aldehydes, the yields of most examples are modest. The leading reasons for this compromise are the following: (1) aliphatic aldehydes are easily decomposed or oxidized to acids; (2) some of the prepared β-arylated aldehyde products may be further transformed into the corresponding α,β-unsaturated aldehydes.Open in a separate windowScheme 4Scope of aryl iodides. Reaction conditions: 1a (0.2 mmol), 2 (0.4 mmol), Pd(OAc)2 (15 mol%), AgTFA (0.3 mmol), L1 (60 mol%), TDG1 (60 mol%), HFIP (1.8 mL), HOAc (0.2 mL), 100 °C, 12 h. Isolated yields.Density functional theory (DFT) calculations were performed to help investigate the reaction mechanism and to elucidate the role of the ligand in improving the reactivity (Fig. 2). The condensation of the aliphatic aldehyde 1a with the TDG to form imine-1a was found thermodynamically neutral (ΔG° = −0.1 kcal mol−1). As a result, it was permissible to use imine-1a directly in the calculations. According to the calculations results, the precatalyst [Pd(OAc)2]3, a trimeric complex, initially experiences dissociation and ligand metathesis with imine-1a to generate the Pd(ii) intermediate IM1, which is thermodynamically favorable by 21.9 kcal mol−1. Consequently, the deprotonated imine-1a couples to the bidentate ligand to form the stable six-membered chelate complex IM1. Therefore, IM1 is indeed the catalyst resting state and serves as the zero point to the energy profile. We have identified two competitive pathways for the Pd(ii)-catalyzed C–H activation starting from IM1, one of which incorporates L1 and another which does not. On the one hand, an acetate ligand substitutes one imine-1a chelator in IM1 to facilitate the subsequent C–H activation leading to IM2, which undergoes C(sp3)–H activation through concerted metalation-deprotonation (CMD) viaTS1 (ΔG‡ = 37.4 kcal mol−1). However, this kinetic barrier is thought to be too high to account for the catalytic activity at 100 °C. On the other hand, the chelate imine-1a could be replaced by two N-coordinated ligands (L1) leading to the Pd(ii) complex IM3. This process is endergonic by 6.4 kcal mol−1. To allow the ensuing C–H activation, IM3 dissociates one ligand (L1) producing the active species IM4, which undergoes TS2 to cleave the β-C(sp3)–H bond and form the [5,6]-bicyclic Pd(ii) intermediate IM5. Although this step features an energy barrier of 31.2 kcal mol−1, it is thought to be feasible under the experimental conditions (100 °C). Possessing similar coordination ability to that of pyridine, the ligand (L1) effectively stabilizes the Pd(ii) center in the C–H activation process, indicating that this step most likely involves a manageable kinetic barrier. This result explicates the origin of the ligand-enabled reactivity (TS2vs.TS1). Additionally, we considered the γ-C(sp3)–H activation pathway viaTS2′ which was found to have a barrier of 35.5 kcal mol−1. The higher energy barrier of TS2′ compared to that of TS2 is attributed to its larger ring strain in the [6,6]-bicyclic Pd(ii) transition state, which reveals the motive for the site-selectivity. Reverting back to the supposed pathway, upon the formation of the bicyclic intermediate IM5, it undergoes ligand/substrate replacement to afford intermediate IM6, at which the Ar–I coordinates to the Pd(ii) center to enable oxidative addition viaTS3 (ΔG‡ = 27.4 kcal mol−1) leading to the five-coordinate Pd(iv) complex IM7. Undergoing direct C–C reductive elimination in IM7 would entail a barrier of 29.6 kcal mol−1 (TS4). Alternatively, iodine abstraction by the silver(i) salt in IM7 is thermodynamically favorable and irreversible, yielding the Pd(iv) intermediate IM8 coordinated to a TFA ligand. Subsequently, C–C reductive coupling viaTS5 generates the Pd(ii) complex IM9 and concludes the arylation process. This step was found both kinetically facile (6.1 kcal mol−1) and thermodynamically favorable (30.7 kcal mol−1). Finally, IM9 reacts with imine-1avia metathesis to regenerate the palladium catalyst IM1 and release imine-3a in a highly exergonic step (21.0 kcal mol−1). Ultimately, imine-3a undergoes hydrolysis to yield the aldehyde product 3a and to release the TDG.Open in a separate windowFig. 2Free energy profiles for the ligand-promoted Pd(ii)-catalyzed site-selective C–H activation and C–C bond formation, alongside the optimized structures of the C–H activation transition states TS1 and TS2 (selected bond distances are labelled in Å). Energies are relative to the complex IM1 and are mass-balanced. 相似文献
Entry | Pd source | L (mol%) | TDG1 (mol%) | Solvent (v/v, mL) | Yield (%) |
---|---|---|---|---|---|
1 | Pd(OAc)2 | L1 (30) | TDG1 (40) | HFIP | 30 |
2 | Pd(OAc)2 | L1 (30) | TDG1 (40) | AcOH | <5 |
3 | Pd(OAc)2 | L1 (30) | TDG1 (40) | HFIP/AcOH (1 : 1) | 28 |
4 | Pd(OAc)2 | L1 (30) | TDG1 (40) | HFIP/AcOH (9 : 1) | 47 |
5 | Pd(OAc)2 | L1 (30) | TDG1 (40) | HFIP/AcOH (1 : 9) | <5 |
6 | Pd(OAc)2 | L1 (30) | TDG1 (60) | HFIP/AcOH (9 : 1) | 50 |
7 | Pd(OAc)2 | L1 (30) | TDG1 (80) | HFIP/AcOH (9 : 1) | 25 |
8 | Pd(OAc)2 | L1 (60) | TDG1 (60) | HFIP/AcOH (9 : 1) | 70(68)b |
9 | Pd(OAc)2 | L1 (75) | TDG1 (60) | HFIP/AcOH (9 : 1) | 51 |
10 | Pd(TFA)2 | L1 (60) | TDG1 (60) | HFIP/AcOH (9 : 1) | 60 |
11 | PdCl2 | L1 (60) | TDG1 (60) | HFIP/AcOH (9 : 1) | 52 |
12 | PdBr2 | L1 (60) | TDG1 (60) | HFIP/AcOH (9 : 1) | 54 |
13 | Pd(OAc)2 | — | TDG1 (60) | HFIP/AcOH (9 : 1) | 9 |
14 | Pd(OAc)2 | L1 (60) | — | HFIP/AcOH (9 : 1) | 0 |
15c | Pd(OAc)2 | L1 (60) | TDG1 (60) | HFIP/AcOH (9 : 1) | 55 |
16.
Liuhai Wang Xin Du Bo Jiang Weifeng Pan Hua Ming Dongsheng Liu 《Entropy (Basel, Switzerland)》2022,24(5)
Software maintenance is indispensable in the software development process. Developers need to spend a lot of time and energy to understand the software when maintaining the software, which increases the difficulty of software maintenance. It is a feasible method to understand the software through the key classes of the software. Identifying the key classes of the software can help developers understand the software more quickly. Existing techniques on key class identification mainly use static analysis techniques to extract software structure information. Such structure information may contain redundant relationships that may not exist when the software runs and ignores the actual interaction times between classes. In this paper, we propose an approach based on dynamic analysis and entropy-based metrics to identify key classes in the Java GUI software system, called KEADA (identifying KEy clAsses based on Dynamic Analysis and entropy-based metrics). First, KEADA extracts software structure information by recording the calling relationship between classes during the software running process; such structure information takes into account the actual interaction of classes. Second, KEADA represents the structure information as a weighted directed network and further calculates the importance of each node using an entropy-based metric OSE (One-order Structural Entropy). Third, KEADA ranks classes in descending order according to their OSE values and selects a small number of classes as the key class candidates. In order to verify the effectiveness of our approach, we conducted experiments on three Java GUI software systems and compared them with seven state-of-the-art approaches. We used the Friedman test to evaluate all approaches, and the results demonstrate that our approach performs best in all software systems. 相似文献
17.
18.
Rui Li Xin Gou Xinyan Li Hainuo Wang Haibo Ruan Yuting Xiong Xianlun Tang Yuanyuan Li Ping-an Yang 《Molecules (Basel, Switzerland)》2022,27(15)
Flexible strain sensors, when considering high sensitivity and a large strain range, have become a key requirement for current robotic applications. However, it is still a thorny issue to take both factors into consideration at the same time. Here, we report a sandwich-structured strain sensor based on Fe nanowires (Fe NWs) that has a high GF (37–53) while taking into account a large strain range (15–57.5%), low hysteresis (2.45%), stability, and low cost with an areal density of Fe NWs of 4.4 mg/cm2. Additionally, the relationship between the contact point of the conductive network, the output resistance, and the areal density of the sensing unit is analyzed. Microscopically, the contact points of the conductive network directly affect the sensor output resistance distribution, thereby affecting the gauge factor (GF) of the sensor. Macroscopically, the areal density and the output resistivity of the strain sensor have the opposite percolation theory, which affects its linearity performance. At the same time, there is a positive correlation between the areal density and the contact point: when the stretching amount is constant, it theoretically shows that the areal density affects the GF. When the areal density reaches this percolation threshold range, the sensing performance is the best. This will lay the foundation for rapid applications in wearable robots. 相似文献
19.
Xiangyu Cui Wenbo Wang Mengcheng Du Delong Ma Xiaolai Zhang 《Molecules (Basel, Switzerland)》2022,27(14)
Soluble sulfur (S8) and insoluble sulfur (IS) have different application fields, and molecular dynamics simulation can reveal their differences in solubility in solvents. It is found that in the simulated carbon disulfide (CS2) solvent, soluble sulfur in the form of clusters mainly promotes the dissolution of clusters through van der Waals interaction between solvent molecules (CS2) and S8, and the solubility gradually increases with the increase in temperature. However, the strong interaction between polymer chains of insoluble sulfur in the form of polymer hinders the diffusion of IS into CS2 solvent, which is not conducive to high-temperature dissolution. The simulated solubility parameter shows that the solubility parameter of soluble sulfur is closer to that of the solvent, which is consistent with the above explanation that soluble sulfur is easy to dissolve. 相似文献
20.
Xiaohui Duan Mina Zhang Huan Du Xiu Gu Caihong Bai Liuqiang Zhang Kaixian Chen Kaifeng Hu Yiming Li 《Molecules (Basel, Switzerland)》2022,27(15)
Scrophulariae Radix (SR) is one of the oldest and most frequently used Chinese herbs for oriental medicine in China. Before clinical use, the SR should be processed using different methods after harvest, such as steaming, “sweating”, and traditional fire-drying. In order to investigate the difference in chemical constituents using different processing methods, the two-dimensional (2D) 1H-13C heteronuclear single quantum correlation (1H-13C HSQC)-based metabolomics approach was applied to extensively characterize the difference in the chemical components in the extracts of SR processed using different processing methods. In total, 20 compounds were identified as potential chemical markers that changed significantly with different steaming durations. Seven compounds can be used as potential chemical markers to differentiate processing by sweating, hot-air drying, and steaming for 4 h. These findings could elucidate the change of chemical constituents of the processed SR and provide a guide for the processing. In addition, our protocol may represent a general approach to characterizing chemical compounds of traditional Chinese medicine (TCM) and therefore might be considered as a promising approach to exploring the scientific basis of traditional processing of TCM. 相似文献