首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   58篇
  国内免费   14篇
化学   534篇
晶体学   8篇
力学   33篇
数学   113篇
物理学   153篇
  2023年   4篇
  2022年   26篇
  2021年   41篇
  2020年   37篇
  2019年   47篇
  2018年   53篇
  2017年   55篇
  2016年   69篇
  2015年   37篇
  2014年   39篇
  2013年   89篇
  2012年   78篇
  2011年   72篇
  2010年   42篇
  2009年   32篇
  2008年   18篇
  2007年   28篇
  2006年   17篇
  2005年   9篇
  2004年   14篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1979年   2篇
排序方式: 共有841条查询结果,搜索用时 15 毫秒
101.
Gas chromatography-mass spectrometry (GC-MS) combined with Chemometric resolution techniques were proposed as a method for the analysis of volatile components of Iranian damask rose oil. The essential oil of damask rose was extracted using hydrodistillation method and analyzed with GC-MS in optimized conditions. A total of 70 components were identified using similarity searches between mass spectra and MS database. This number was extended to 95 components with concentrations higher than 0.01% accounting for 94.75% of the total relative content using Chemometric techniques. For the first time in this work, an approach based upon subspace comparison is used for determination of the chemical rank of GC-MS data. The peak clusters were resolved using heuristic evolving latent projection (HELP) and multivariate curve resolution-alternating least square (MCR-ALS) by applying proper constraints, and the combination of both methods for some cases. It is concluded that a thorough analysis of the complex mixtures such as Iranian damask rose requires sophisticated GC-MS coupled with the Chemometric techniques.  相似文献   
102.
This article investigates the stabilization and control problems for a general active fault‐tolerant control system (AFTCS) in a stochastic framework. The novelty of the research lies in utilizing uncertain nonhomogeneous Markovian structures to take account for the imperfect fault detection and diagnosis (FDD) algorithms of the AFTCS. The underlying AFTCS is supposed to be modeled by two random processes of Markov type; one characterizing the system fault process and the other describing the FDD process. It is assumed that the FDD algorithm is imperfect and provides inaccurate Markovian parameters for the FDD process. Specifically, it provides uncertain transition rates (TRs); the TRs that lie in an interval without any particular structures. This framework is more consistent with real‐world applications to accommodate different types of faults. It is more general than the previously developed AFTCSs because of eliminating the need for an accurate estimation of the fault process. To solve the stabilizability and the controller design problems of this AFTCS, the whole system is viewed as an uncertain nonhomogeneous Markovian jump linear system (NHMJLS) with time‐varying and uncertain specifications. Based on the multiple and stochastic Lyapunov function for the NHMJLS, first a sufficient condition is obtained to analyze the system stabilizability and then, the controller gains are synthesized. Unlike the previous fault‐tolerant controllers, the proposed robust controller only needs to access the FDD process, besides it is easily obtainable through the existing optimization techniques. It is successfully tested on a practical inverted pendulum controlled by a fault‐prone DC motor. © 2016 Wiley Periodicals, Inc. Complexity 21: 318–329, 2016  相似文献   
103.
Linear alkylbenzene sulfonic acid (LAS) is a common substance used in the production of detergents in the world. This is an organic material with its structure made of benzene ring and double bonds. This structure creates many problems for the environment and humans. Up to now, various methods have been used to eliminate this pollution. A recently proposed method to remove this organic pollution is advanced oxidation processes. Photocatalytic degradation is also an efficient method to destroy organic structures. In this research, TiO2 nanoparticles are used as a photocatalyst that is activated by UV irradiation. TiO2 nanoparticles and pollution suspension are incorporated into the new design of the reactor with coaxial cylinders in which the inner cylinder rotates at a constant speed. The results show that in low concentrations of LAS, using TiO2 nanoparticles, the time to reach pollution elimination is reduced significantly. In higher concentrations of LAS, UV irradiation is more effective than activated TiO2 nanoparticles.  相似文献   
104.
In the present study, a highly sensitive and specific bio-sensing platform for enzyme-free and colorimetric detection of nucleic acids has been developed. The biosensor is composed of two DNA nanostructures and two fuel strands that construct the foundation of a feed-forward catalytic DNA circuit. Upon binding the target strand to a specific DNA nanostructure, the circuit is run in order that at the end a hemin-binding aptamer, with the ability to convert a colorless substrate into a colored substance is released. Based on this strategy, 4 pM of the target DNA can be easily detected in serum samples by naked eyes after only a two-hour incubation with the circuit; meanwhile, if the incubation time is extended to 3 h, the biosensor can detect 1 pM of the target DNA. Besides the elevated sensitivity, the circuit can truly discriminate a spurious target containing one nucleotide mismatch with high specificity. Overall, the enzyme-free catalytic DNA circuit can be used as a sensitive alternative method to enzyme-based biosensors for the specific and cost-effective detection of nucleic acids.  相似文献   
105.
Comprehensive two‐dimensional gas chromatography and flame ionization detection combined with unfolded‐partial least squares is proposed as a simple, fast and reliable method to assess the quality of gasoline and to detect its potential adulterants. The data for the calibration set are first baseline corrected using a two‐dimensional asymmetric least squares algorithm. The number of significant partial least squares components to build the model is determined using the minimum value of root‐mean square error of leave‐one out cross validation, which was 4. In this regard, blends of gasoline with kerosene, white spirit and paint thinner as frequently used adulterants are used to make calibration samples. Appropriate statistical parameters of regression coefficient of 0.996–0.998, root‐mean square error of prediction of 0.005–0.010 and relative error of prediction of 1.54–3.82% for the calibration set show the reliability of the developed method. In addition, the developed method is externally validated with three samples in validation set (with a relative error of prediction below 10.0%). Finally, to test the applicability of the proposed strategy for the analysis of real samples, five real gasoline samples collected from gas stations are used for this purpose and the gasoline proportions were in range of 70–85%. Also, the relative standard deviations were below 8.5% for different samples in the prediction set.  相似文献   
106.
Ab initio Car-Parinnello molecular dynamics is used to simulate the structure and the dynamics of 1-butyl-3-methylimidazolium iodide ([bmim]I) ionic liquid at 300 K. Site-site pair correlation functions reveal that the anion has a strong interaction with any three C-H's of the imidazolium ring. The ring bends over and wraps around the anion such that the two nitrogen atoms take a distance to the anion. Electron donating butyl group contributes the electronic polarization in addition to geometrical (out-of-plane) polarization of the ring due to the liquid environment. This facilitates bending of the ring along the axis passing through nitrogen atoms. The average bending angle depends largely on the alkyl chain length and slightly on the anion type. Redistribution of electron density over the ring caused by the electron donating alkyl group provides additional independent evidence to the instability of lattice structure, hence the low melting point of the ionic liquid. Simulated viscosity and diffusion coefficients of [bmim]I are in quite agreement with the experiments.  相似文献   
107.
A modified glassy carbon electrode has been constructed using a 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole along with multiwalled carbon nanotubes. The electrochemical behaviour of modified electrode has been investigated by cyclic voltammetry. Electrocatalytic activity of the modified electrode was investigated for the oxidation of hydroxylamine in 0.1 M phosphate-buffered solution of pH 8. The modified electrode showed electrocatalytic response to the oxidation of hydroxylamine at the potential of 330 mV. The linear range and detection limit for the detection of hydroxylamine in the optimum condition were found to be 4.0?×?10?7 to 6.75?×?10?4 M and 28.0?±?1.0 nM, respectively. Finally, the method was employed for the determination of hydroxylamine in water samples.  相似文献   
108.
The Selkov system, which is typically employed to model glycolysis phenomena, unveils some rich dynamics and some other complex formations in biochemical reactions. In the present work, the synchronization problem of the glycolysis reaction-diffusion model is handled and examined. In addition, a novel convenient control law is designed in a linear form and, on the other hand, the stability of the associated error system is demonstrated through utilizing a suitable Lyapunov function. To illustrate the applicability of the proposed schemes, several numerical simulations are performed in one- and two-spatial dimensions.  相似文献   
109.
Nanostructured ternary/mixed transition metal oxides have attracted considerable attentions because of their high‐capacity and high‐rate capability in the electrochemical energy storage applications, but facile large‐scale fabrication with desired nanostructures still remains a great challenge. To overcome this, a facile synthesis of porous NiCoO2 nanofibers composed of interconnected nanoparticles via an electrospinning–annealing strategy is reported herein. When examined as anode materials for lithium‐ion batteries, the as‐prepared porous NiCoO2 nanofibers demonstrate superior lithium storage properties, delivering a high discharge capacity of 945 mA h g?1 after 140 cycles at 100 mA g?1 and a high rate capacity of 523 mA h g?1 at 2000 mA g?1. This excellent electrochemical performance could be ascribed to the novel hierarchical nanoparticle‐nanofiber assembly structure, which can not only buffer the volumetric changes upon lithiation/delithiation processes but also provide enlarged surface sites for lithium storage and facilitate the charge/electrolyte diffusion. Notably, a facile synthetic strategy for fabrication of ternary/mixed metal oxides with 1D nanostructures, which is promising for energy‐related applications, is provided.  相似文献   
110.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号