首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   716篇
  免费   49篇
  国内免费   14篇
化学   496篇
晶体学   7篇
力学   29篇
数学   106篇
物理学   141篇
  2024年   2篇
  2023年   3篇
  2022年   28篇
  2021年   40篇
  2020年   34篇
  2019年   42篇
  2018年   48篇
  2017年   54篇
  2016年   60篇
  2015年   35篇
  2014年   35篇
  2013年   83篇
  2012年   73篇
  2011年   67篇
  2010年   37篇
  2009年   28篇
  2008年   14篇
  2007年   26篇
  2006年   16篇
  2005年   8篇
  2004年   14篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1979年   2篇
排序方式: 共有779条查询结果,搜索用时 15 毫秒
661.
An efficient synthesis of 7‐amino‐6‐imino‐9‐phenyl‐6H‐benzo[c]chromene‐8‐carbonitrile derivatives 3 by a three‐component reaction of salicylaldehydes (=2‐hydroxybenzaldehydes) 1 , malononitrile (=propanedinitrile), and 2‐(1‐arylethylidene)malononitrile 2 under ultrasonic irradiation in EtOH is reported. Good yields, short reaction times, and easy purification are the main advantages of the present method. The structures were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   
662.
Spectrofluorometric measurements have been used to elaborate the self-aggregation of mixture of anioinic, sodium dodecylbenzenesulfonate (SDBS), and cationic gemini, alkanediyl-α, ω-bis (tetradecyldimethylammonium bromide) (14-4-14) with nonionic surfactant, polyoxyethylene 10 cetyl ether (Brij-56). The critical micelle concentration (cmc) of the binary mixtures has been investigated. Application of the regular solution theory (RST) to the experimental data yield the interaction parameter at mixed micelles (β), indicate an attractive interaction and reflect the synergistic behavior in both Brij-56/SDBS and Brij-56/14-4-14 systems. The micelle aggregation number (N agg) was measured using a steady state fluorescence quenching method. The N agg values of the mixed surfactant system were larger than those of pure components. The micropolarity of various combinations and the binding constants (K sv) were determined from the ratio of intensity of peaks (I 1/I 3) of pyrene fluorescence emission spectrum and its quenching, respectively.  相似文献   
663.
Effects of xanthan gum (XG) (0.1 wt%) and pectin (PE) (0.5 wt%) alone and in combination with different concentrations (0.2 and 0.4 wt%) of locust bean gum (LBG), modified starch (MS), and Na-alginate (ALG) on some of the rheological characteristics of low-fat spreads, including flow behavior curves, rheological modeling, apparent viscosity, rheological modules (storage modulus (G′) and loss modulus (G″)), and delta degree (G″/G′) were studied. Results showed the power-law model was better than the Herschel–Bulkley model to describe the flow curve of dispersions. The k-value in the power-law model increased with increase in biopolymers concentration in solution. All samples exhibited shear-thinning flow behavior with a low yield stress. Dynamic oscillatory shear test showed that the spreads had a viscoelastic solid behavior with a gel-like structure. The G′ value was increased by increasing frequency from 0.03 to 15 Hz, while the G″ and G″/G′ values decreased. Also, MS in combination with XG and PE led to increase the G′ values of spreads in comparison with ALG and LBG. Moreover, microstructural and stability observations revealed that the spreads prepared with 0.1% XG-0.2% LBG significantly had the highest oiling out.  相似文献   
664.
This study aims to clarify the effect of fuel ratio of coal on the turbulent flame speed of ammonia/coal particle cloud co-combustion at atmospheric pressure under various turbulence intensities. High-fuel-ratio coals are not usually used in coal-fired thermal power plants because of their low flame stability. The expectation is that ammonia as a hydrogen-energy carrier would improve the ignition capability of coal particles in co-combustion. Experiments on spherical turbulent flame propagation of co-combustion were conducted for various coal types under various turbulence intensities, using the unique experimental apparatus developed for the co-combustion. Experimental results show that the flame speed of co-combustion with a low equivalence ratio of ammonia/oxidizer mixture for bituminous coal case was found to be three times faster than that of pure coal combustion and two times faster than that of pure ammonia combustion. On the other hand, the flame speed of co-combustion for the highest-fuel-ratio coal case is lower than that of the pure ammonia combustion case, although the flame propagation can be sustained due to the ammonia mixing. To explain the difference of tendencies depending on the fuel ratio of coal, a flame propagation mechanism of ammonia/coal particle cloud co-combustion was proposed. Two positive effects are the increases of local equivalence ratio and the increases of radiation heat flux, which increases the flame speed. In opposite, a negative effect is the heat sink effect that decreases the flame speed. The two positive effects on the flame speed of co-combustion overwhelm a negative effect for bituminous coal case, while the negative effect overcomes both positive effects for the highest-fuel-ratio coal case. The findings of the study can contribute to the reduction of solid fuel costs when the ammonia is introduced as CO2 free energy carrier and can improve the energy security through the utilization of high-fuel-ratio coals.  相似文献   
665.
Because ammonia is one of the most promising candidates for energy carrier in the future, various applications of ammonia as a fuel are currently considered. One medium for utilizing ammonia is by introducing it to coal-fired boilers. To the best of our knowledge, this paper is the first to report the fundamental mechanism of the flame propagation phenomenon for pulverized coal/ammonia co-combustion. The effects of the equivalence ratio of the ammonia-oxidizer mixture on the flame propagation velocity of pulverized coal/ammonia co-combustion in turbulent fields were clarified by the experiments employing a unique fan-stirred constant volume chamber. The flame propagation velocities of pulverized coal/ammonia co-combustion, pure ammonia combustion, and pure pulverized coal combustion were compared. As expected, the flame propagation velocity of pulverized coal/ammonia was higher than that of the pure pulverized coal combustion for all conditions. However, the comparison of the flame propagation velocities of pulverized coal/ammonia co-combustion and that of the pure ammonia combustion, revealed that whether the flame propagation of the pulverized coal/ammonia was higher than that of the pure ammonia combustion was dependent on the equivalence ratio of the ammonia-oxidizer. This unique feature was explained by a mechanism including three competing effects proposed by the authors. In the ammonia lean condition, the positive effects, which are the strong radiation from the luminous flame and the increment of local equivalence ratio by the addition of volatile matter, are larger than the negative effect, which is the heat absorption by coal particles in preheat zone. In the ammonia rich condition, the effect of an increment of the local equivalence ratio by the addition of volatile matter turns into a negative effect. Consequently, the negative effects overcome the positive effect in the ammonia rich condition resulting in a lower flame propagation velocity of pulverized coal/ammonia co-combustion.  相似文献   
666.
Molecular dynamics simulations are performed to obtain insight into the structural properties of hydrated Nafion using the sandwich model of the polymer membrane. It is shown that a larger distance between the sulfonate groups of a chain leads to the polymer forming a better inverted micelles structure. Water– and hydronium–polymer interfaces are investigated. Comparing our results with others indicates that, from the perspective of distance, the formation of shells of water and hydronium ions is independent of the model and monomer type, but depends on both if the coordination number is considered. The behaviour of water molecules and hydronium ions is also studied dynamically. Our survey shows that there is an increasing jump in the diffusion coefficient of water at a certain distance between the sulfonate groups of a chain, which then tends to change slightly. Such behaviour is discussed on the basis of density, the available space, as well as the loss of one translational degree of freedom of the water molecules at larger distances. The diffusion coefficient for the hydronium ions was also determined to be much smaller than that for water (by 3.5–6.1 times). The diffusion coefficient of the hydronium ions shows a declining jump at a certain distance between the sulfonate groups of a chain, but the jump is not significant as that for the water molecules.  相似文献   
667.
In the current study, spectroscopic and physicochemical properties of newly prepared ionic liquids were investigated. Ionic liquids were synthesized via a simple and straightforward route using a metathesis reaction of either N,N-diethyl-p-phenylenediamine monohydrochloride or N-phenacylpyridinium bromide with bis(trifluoromethane)sulfonimide lithium in water. High yield and purity were obtained for the resultant ionic liquids. Data acquired by use of 1H NMR and FT-IR measurements were consistent with the chemical structures of newly prepared ionic liquids. Results of thermal gravimetric analysis also implied that these ionic liquids have good thermal stability. In addition, UV–vis and fluorescence spectroscopy measurements provided that new ionic liquids are good absorbent and fluorescent. Time-based fluorescence steady-state measurements showed that ionic liquids have high photostability against photobleaching. For a deeper mechanistic understanding of the analytical potential of newly synthesized ionic liquids, spectroscopic and physicochemical parameters, including singlet absorption, extinction coefficient, fluorescence quantum yield, Stokes shift, oscillator strength and dipole moment, were also investigated.  相似文献   
668.
669.
Pancreatic cancer (PC) is the fourth leading cause of all cancer-related deaths. Despite major improvements in treating PC, low survival rate remains a major challenge, indicating the need for alternative approaches, including herbal medicine. Among medicinal plants is Ziziphus nummularia (family Rhamnaceae), which is a thorny shrub rich in bioactive molecules. Leaves of Ziziphus nummularia have been used to treat many pathological conditions, including cancer. However, their effects on human PC are still unknown. Here, we show that the treatment of human pancreatic ductal adenocarcinoma cells (Capan-2) with Ziziphus nummularia ethanolic extract (ZNE) (100–300 μg/mL) attenuated cell proliferation in a time- and concentration-dependent manner. Pretreatment with N-acetylcysteine, an ROS scavenger, attenuated the anti-proliferative effect of ZNE. In addition, ZNE significantly decreased the migratory and invasive capacity of Capan-2 with a concomitant downregulation of integrin α2 and increased cell–cell aggregation. In addition, ZNE inhibited in ovo angiogenesis as well as reduced VEGF and nitric oxide levels. Furthermore, ZNE downregulated the ERK1/2 and NF-κB signaling pathways, which are known to drive tumorigenic and metastatic events. Taken together, our results suggest that ZNE can attenuate the malignant phenotype of Capan-2 by inhibiting hallmarks of PC. Our data also provide evidence for the potential anticancer effect of Ziziphus nummularia, which may represent a new resource of novel anticancer compounds, especially ones that can be utilized for the management of PC.  相似文献   
670.
The effects of laser irradiation with a small N2 laser on the reactivation of a pyrolytic carbon (PC) film electrode were investigated. Cyclic voltammetry, Raman spectroscopy and scanning electron microscopy (SEM) were used to characterize the electrode. The electrode response decayed during the solution exposure but could be restored to a good performance via this reactivation method. It was found that the effect of laser to promote electron transfer was desorption the physisorbed impurities to exposure more active sites on the surface. Also, the electrochemical results were compared to the results of organic solvent washing and anodization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号