首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6252篇
  免费   1058篇
  国内免费   632篇
化学   4050篇
晶体学   55篇
力学   299篇
综合类   38篇
数学   854篇
物理学   2646篇
  2024年   23篇
  2023年   141篇
  2022年   215篇
  2021年   237篇
  2020年   252篇
  2019年   213篇
  2018年   193篇
  2017年   185篇
  2016年   315篇
  2015年   268篇
  2014年   342篇
  2013年   411篇
  2012年   518篇
  2011年   585篇
  2010年   354篇
  2009年   356篇
  2008年   384篇
  2007年   350篇
  2006年   340篇
  2005年   291篇
  2004年   214篇
  2003年   181篇
  2002年   208篇
  2001年   157篇
  2000年   146篇
  1999年   166篇
  1998年   136篇
  1997年   113篇
  1996年   119篇
  1995年   89篇
  1994年   69篇
  1993年   59篇
  1992年   58篇
  1991年   62篇
  1990年   40篇
  1989年   33篇
  1988年   26篇
  1987年   18篇
  1986年   22篇
  1985年   18篇
  1984年   6篇
  1983年   5篇
  1982年   8篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1957年   1篇
排序方式: 共有7942条查询结果,搜索用时 15 毫秒
71.
The photoluminescence of Co-Al-layered double hydroxide   总被引:1,自引:0,他引:1  
We report a new optical behaviour of pure Co-Al-layered double hydroxide (LDH).It was found that the Co-Al-LDH sample could emit fluorescence without any fluorescent substances intercalated.Its excitation spectrum shows a maximum peak near the wavelength 370nm,the maximum emission peak appears at 430 nm and the photoluminescence colour of the Co-Al-LDH sample is blue.This new optical property will be expected to extend the potential applications of LDHs in optical materials field.  相似文献   
72.
We have developed efficient synthetic routes to obtain a novel building block spiro[[8H]indeno[2,1-b]thiophene-8,9′-fluorene] (SITF), a monothiophene-containing spirobifluorene analogue, and constructed blue light-emitting materials, including 2′,7′-bis([1,1′-biphenyl]-4-yl)-spiro[indeno[2,1-b]thiophene-8,9′-fluorene] (BBP-SITF) and 2′,7′-bis(9,9′-spirobifluoren-2-yl)spiro[[8H]indeno[2,1-b]-thiophene-8,9′-fluorene] (BSBF-SITF). BSBF-SITF has shown to be a stable blue light-emitting material with high PL quantum efficiency (89%) and unique regioselective feature at the C2 of thiophene, which indicate that BSBF-SITF will be useful for constructing complicated optoelectronic systems.  相似文献   
73.
Wang  Shutao  Wang  Enbo  Hou  Yu  Li  Yangguang  Wang  Li  Yuan  Mei  Hu  Changwen 《Transition Metal Chemistry》2003,28(6):616-620
A novel organic/inorganic hybrid molybdenum phosphate, [NH3(CH2CH2)2NH3]3[NH3(CH2CH2)2NH2]Na5-[Mo6O12(OH)3(PO4)(HPO4)3]2·4H2O (1), involving molybdenum presented in V oxidation, has been hydrothermally prepared and characterized by elemental analysis, i.r., u.v.–vis., x.p.s., t.g. and single crystal X-ray diffraction. The structure of the title compound (1) may be considered to consist of two [Mo6O12(OH)3(PO4)(HPO4)3] units bonded together with NaO6 octahedra, forming dimers. Further, these dimers connect with each other through four Na+ cations as bridges, giving rise to novel one-dimensional chain-like skeleton. Piperazines exist among inorganic chains acting as charge balancing cations.  相似文献   
74.
Peptide-based nanofibres are a versatile class of tunable materials with applications in optoelectronics, sensing and tissue engineering. However, the understanding of the nanofibre surface at the molecular level is limited. Here, a series of homologous dilysine–diphenylalnine tetrapeptides were synthesised and shown to self-assemble into water-soluble nanofibres. Despite the peptide nanofibres displaying similar morphologies, as evaluated through atomic force microscopy and neutron scattering, significant differences were observed in their ability to support sensitive primary neurons. Contact angle and labelling experiments revealed that differential presentation of lysine moieties at the fibre surface did not affect neuronal viability; however the mobility of phenylalanine residues at the nanofibre surface, elucidated through solid- and gel-state NMR studies and confirmed through tethered bilayer lipid membrane experiments, was found to be the determining factor in governing the suitability of a given peptide as a scaffold for primary neurons. This work offers new insights into characterising and controlling the nanofibre surface at the molecular level.

The mobility of hydrophobic moieties at a peptide nanofibre surface determines its suitability as a scaffold for sensitive primary cells.  相似文献   
75.
Trace amounts of pesticides in soil were determined by liquid-phase microextraction (LPME) coupled to gas chromatography-mass spectrometry (GC-MS). The technique involved the use of a small amount (3 microl) of organic solvent impregnated in a hollow fiber membrane, which was attached to the needle of a conventional GC syringe. The organic solvent was repeatedly discharged into and withdrawn from the porous polypropylene hollow fiber by a syringe pump, with the pesticides being extracted from a 4 ml aqueous soil sample into the organic solvent within the hollow fiber. Aspects of the developed procedure such as organic solvent selection, extraction time, movement pattern of plunger, concentrations of humic acid and salt, and the proportion of organic solvent in the soil sample, were optimized. Limits of detection (LOD) were between 0.05 and 0.1 microg/g with GC-MS analysis under selected-ion monitoring (SIM). Also, this method provided good precision ranging from 6 to 13%; the relative standard deviations were lower than 10% for most target pesticides (at spiked levels of 0.5 microg/g in aqueous soil sample). Finally, the results were compared to those achieved using solid-phase microextraction (SPME). The results demonstrated that LPME was a fast (within 4 min) and accurate method to determine trace amounts of pesticides in soil.  相似文献   
76.
The adsorption properties of NO molecule on anionic, cationic, and neutral Au(n) clusters (n=1-6) are studied using the density functional theory with the generalized gradient approximation, and with the hybrid functional. For anionic and cationic clusters, the charge transfer between the Au clusters and NO molecule and the corresponding weakening and elongation of the N-O bond are essential factors of the adsorption. The neutral Au clusters have also remarkable adsorption ability to NO molecule. The adsorption energies of NO on the cationic clusters are generally greater than those on the neutral and anionic clusters.  相似文献   
77.
The isospecific 3,4-polymerization of isoprene has been achieved for the first time by use of a combination of a binuclear rare earth metal dialkyl complex, such as [Me2Si(C5Me4)(mu-PCy)YCH2SiMe3]2 (Cy = cyclohexyl), and an equimolar amount of [Ph3C][B(C6F5)4] as a catalyst system. A DFT calculation suggested that a binuclear monocationic monoalkyl species, such as [Me2Si(C5Me4)(mu-PCy)Y(mu-CH2SiMe3)Y(mu-PCy)(C5Me4)SiMe2]+, in which the alkyl group bridges the two metal centers, could be the true catalyst species.  相似文献   
78.
π‐Allyl (η3‐C3H5), a four‐electron donor, was used as a ligand model to replace η5‐C5Me4SiMe3 in DFT calculations on the tetranuclear yttrium polyhydrido complex (η5‐C5Me4SiMe3)4Y4H8 containing a Y4H8 tetrahedral core structure, which may separate the four π‐allyl groups and hence suppress the allyl ligand coupling during the computation. In terms of the calculated core geometry, isomerization energy barrier, charge population, and frontier orbital features of the complex, the η3‐C3H5 ligand model is comparable to η5‐C5H5. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
79.
What is the most favorite and original chemistry developed in your research group? We focus on developing new organic photovoltaic materials and exploring their applications in photovoltaic devices. Based on the new materials, we can figure out the correlations among chemical strictures, optoelectronic properties, and photovoltaic behaviors. Our group originally demonstrated quite a few build blocks for making conjugated polymers for photovoltaic applications, some of them have been broadly used by the researchers in the field. How do you get into this specific field? Could you please share some experiences with our readers? I got into this field when I was a graduate student in 2002, just because my supervisor gave me a research topic for synthesis of new conjugated polymers. At that moment, as a fresh graduate student, I had no chance to say yes or no, but to do it. The field of organic solar cells is oriented by the new organic photovoltaic materials. In the past decades, the materials have been updated for a few generations, which promoted the device performance to be higher and closer to practical applications. We have to concentrate on the fundamental problems but also need to follow the pace of the filed. How do you supervise your students? In my opinion, the students need more specific projects to get into the field so as to be well trained at the beginning. In the later stage, I prefer to encourage them to find and creatively figure out the real fundamental problems. I used to give them a few questions: Why do you need to do this project? How to make a clear definition for the problem? Can you suggest a new and better approach to solve it? What is the most important personality for scientific research? Passion, perseverance and sense of innovation. What is your favorite journal(s)? The journals publishing the latest and/or systematic research works in chemistry and material science.  相似文献   
80.
The frontier of nitric oxide biology has gradually shifted from mechanism elucidation to biomanipulation, e.g. cell-proliferation promotion, cell-apoptosis induction, and lifespan modulation. This warrants biocompatible nitric oxide (NO) donating materials, whose NO release is not only controlled by a bioorthogonal trigger, but also self-calibrated allowing real-time monitoring and hence an onset/offset of the NO release. Additionally, the dose of NO release should be facilely adjusted in a large dynamic range; flux and the dose are critical to the biological outcome of NO treatment. Via self-assembly of a PEGylated small-molecule NO donor, we developed novel NO-donating nanoparticles (PEG-NORM), which meet all the aforementioned criteria. We showcased that a low flux of NO induced cell proliferation, while a high flux induced cell oxidative stress and, ultimately, death. Notably, PEG-NORM was capable of efficiently modulating the lifespan of C. elegans. The average lifespan of C. elegans could be fine-tuned to be as short as 15.87 ± 0.29 days with a high dose of NO, or as long as 21.13 ± 0.41 days with a low dose of NO, compared to an average life-span of 18.87 ± 0.46 days. Thus, PEG-NORM has broad potential in cell manipulation and life-span modulation and could drive the advancement of NO biology and medicine.

Schematic illustration of modulating the longevity of the C. elegans by PEG-NORM nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号