首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3893篇
  免费   125篇
  国内免费   23篇
化学   2848篇
晶体学   42篇
力学   105篇
数学   477篇
物理学   569篇
  2023年   17篇
  2022年   18篇
  2021年   37篇
  2020年   59篇
  2019年   54篇
  2018年   49篇
  2017年   37篇
  2016年   106篇
  2015年   83篇
  2014年   87篇
  2013年   212篇
  2012年   254篇
  2011年   293篇
  2010年   118篇
  2009年   107篇
  2008年   271篇
  2007年   290篇
  2006年   271篇
  2005年   266篇
  2004年   189篇
  2003年   170篇
  2002年   151篇
  2001年   52篇
  2000年   54篇
  1999年   38篇
  1998年   40篇
  1997年   43篇
  1996年   58篇
  1995年   35篇
  1994年   41篇
  1993年   29篇
  1992年   34篇
  1991年   31篇
  1990年   38篇
  1989年   24篇
  1988年   20篇
  1987年   12篇
  1986年   18篇
  1985年   25篇
  1984年   41篇
  1983年   30篇
  1982年   38篇
  1981年   31篇
  1980年   22篇
  1979年   17篇
  1978年   25篇
  1977年   16篇
  1976年   14篇
  1974年   17篇
  1973年   12篇
排序方式: 共有4041条查询结果,搜索用时 15 毫秒
981.
982.
Herein, we report the synthesis of conducting poly (terthiophene)s using a side chain precursor polymer approach. Random copolymers were prepared by ring opening metathesis polymerization of two norbornylene monomers, one containing a pendant terthiophene group and the other containing a pendant acetate group. Solid‐state oxidative conversion of the terthiophene units was used to produce conductive polymers. Oxidative solid‐state conversion was successful for copolymers containing as little as 1 mol % of terthiophene comonomer. The electrical and optical properties of CPs were studied as a function of the amount of electroactive moiety, terthiophene (3T), present in the copolymer. The CPs were found to have conductivity varying between 10?1 and 10?4 S/cm depending on the precursor copolymer compositions. The CPs obtained from all precursors had no significant difference in their energy gaps and showed blue to orange color transitions when switching from the oxidized to the neutral states, respectively. The absorbance intensity at 426 nm for poly(3T) from the precursors fits the Beer–Lambert law corresponding to the range of initial 3T content in the precursor copolymer composition (from 1 to 100 mol %). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 756–763, 2010  相似文献   
983.
Recent advances in the field of cancer biology have accelerated the discovery and development of novel biopharmaceuticals. At the forefront of these drug development efforts are high-throughput screening, compressed timelines, and limited sample quantities, all characteristic of the discovery space. To meet program targets, large numbers of protein variants must be produced, screened, and characterized, presenting a daunting analytical challenge. Additionally, the higher-order structure is paramount for protein function and must be monitored as a critical quality attribute. Matrix-assisted laser desorption/ionization mass spectrometry has been utilized as an ultra-fast, automatable, sample-sparing analytical tool for biomolecules. Our group has published applications integrating hydrogen-deuterium exchange mass spectrometry with matrix-assisted laser desorption/ionization mass spectrometry for the rapid conformational characterization of small proteins, the current work expands this application to monoclonal and bi-specific antibodies. This study demonstrates the ability of the methodology, matrix-assisted laser desorption/ionization hydrogen-deuterium exchange mass spectrometry, to detect conformational differences between bi-specific antibodies from different expression hosts. These conformational differences were validated by orthogonal techniques including circular dichroism, nuclear magnetic resonance, and size-exclusion chromatography hydrogen-deuterium exchange mass spectrometry. This work demonstrates the utility of applying the developed methodology as a rapid conformational screening tool to triage samples for further analytical characterization.  相似文献   
984.
985.
We demonstrate the mixed annihilation electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) with various cyclometalated iridium(iii) chelates. Compared to mixed ECL systems comprising organic luminophores, the absence of T-route pathways enables effective predictions of the observed ECL based on simple estimations of the exergonicity of the reactions leading to excited state production. Moreover, the multiple, closely spaced reductions and oxidations of the metal chelates provide the ability to finely tune the energetics and therefore the observed emission colour. Distinct emissions from multiple luminophores in the same solution are observed in numerous systems. The relative intensity of these emissions and the overall emission colour are dependent on the particular oxidized and reduced species selected by the applied electrochemical potentials. Finally, these studies offer insights into the importance of electronic factors in the question of whether the reduced or oxidized partner becomes excited in annihilation ECL.  相似文献   
986.
Subtle differences in ligand coordination angle and rigidity lead to high fidelity sorting between individual components displaying identical coordination motifs upon metal-mediated self-assembly. Narcissistic self-sorting can be achieved between highly similar ligands that vary minimally in rigidity and internal coordination angle upon combination with Fe(ii) ions and 2-formylpyridine. Selective, sequential cage formation can be precisely controlled in a single flask from a mix of three different core ligands (and 33 total components) differing only in the hybridization of one group that is uninvolved in the metal coordination process.  相似文献   
987.
Thiol‐click reactions lead to polymeric materials with a wide range of interesting mechanical, electrical, and optical properties. However, this reaction mechanism typically results in bulk materials with a low glass transition temperature (Tg) due to rotational flexibility around the thioether linkages found in networks such as thiol‐ene, thiol‐epoxy, and thiol‐acrylate systems. This report explores the thiol‐maleimide reaction utilized for the first time as a solvent‐free reaction system to synthesize high‐Tg thermosetting networks. Through thermomechanical characterization via dynamic mechanical analysis, the homogeneity and Tgs of thiol‐maleimide networks are compared to similarly structured thiol‐ene and thiol‐epoxy networks. While preliminary data show more heterogeneous networks for thiol‐maleimide systems, bulk materials exhibit Tgs 80 °C higher than other thiol‐click systems explored herein. Finally, hollow tubes are synthesized using each thiol‐click reaction mechanism and employed in low‐ and high‐temperature environments, demonstrating the ability to withstand a compressive radial 100 N deformation at 100 °C wherein other thiol‐click systems fail mechanically.

  相似文献   

988.
Erd?s, Gallai, and Tuza posed the following problem: given an n‐vertex graph G, let denote the smallest size of a set of edges whose deletion makes G triangle‐free, and let denote the largest size of a set of edges containing at most one edge from each triangle of G. Is it always the case that ? We have two main results. We first obtain the upper bound , as a partial result toward the Erd?s–Gallai–Tuza conjecture. We also show that always , where m is the number of edges in G; this bound is sharp in several notable cases.  相似文献   
989.
A series of polyelectrolytes with controlled molecular weight, a narrow chain-length distribution, and systematic structural differences were synthesized using atom-transfer radical polymerization and investigated as stabilizers for magnetite nanoparticles in aqueous suspensions. Structural differences include the degree of polymerization, the chain architecture, and the identity of the charged functional unit. The synthesized polymers are sulfonated poly(2-hydroxyethyl methacrylate), a block copolymer of the former with poly(n-butyl methacrylate), poly(sodium styrene sulfonate), poly(sodium acrylate), and poly(sodium vinylphosphonate). The colloidal stability is assessed by measuring the fraction of particles, based on turbidity, that sediment after a period of time at increasing ionic strength. Sedimentation results are complimented by dynamic light scattering determinations of the hydrodynamic diameter of the particles that remain suspended. When adsorption and sedimentation are conducted at high pH, poly(sodium acrylate) and poly(sodium vinylphosphonate) yield the most stable suspensions because of their strong coordinative interactions with the iron oxide surface. At low pH, the polymers that retain pendant negative charges (each of the sulfonated polymers) yield high stable fractions at all ionic strengths investigated up to 100 mM (NaCl), whereas polyelectrolytes that become protonated with decreasing pH, poly(sodium acrylate) and poly(sodium vinylphosphonate), lose their stabilizing capacity even at low ionic strengths. The chain-length distribution profoundly alters a polymer's stabilization tendencies. Two poly(sodium acrylate) samples with the same number-average molecular weight but widely different chain-length distributions proved to have opposite tendencies, with the polydisperse sample being a good stabilizer and the low polydispersity one being a strong flocculant. This investigation provides guidelines for the design of polymeric stabilizers for magnetite nanoparticles according to the pH and ionic strength of the intended application.  相似文献   
990.
We report the energetics of association in polymeric gels with two types of junction points: crystalline hydrophobic junctions and polymer-nanoparticle junctions. Time-temperature superposition (TTS) of small-amplitude oscillatory rheological measurements was used to probe crystalline poly(L-lactide) (PLLA)-based gels with and without added laponite nanoparticles. For associative polymer gels, the activation energy derived from the TTS shift factors is generally accepted as the associative strength or energy needed to break a junction point. Our systems were found to obey TTS over a wide temperature range of 15-70 °C. For systems with no added nanoparticles, two distinct behaviors were seen, with a transition occurring at a temperature close to the glass transition temperature of PLLA, T(g). Above T(g), the activation energy was similar to the PLLA crystallization enthalpy, suggesting that the activation energy is related to the energy needed to pull a PLLA chain out of the crystalline domain. Below T(g), the activation energy is expected to be the energy required to increase mobility of the polymer chains and soften the glassy regions of the PLLA core. Similar behavior was seen in the nanocomposite gels with added laponite; however, the added clay appears to reduce the average value of the activation enthalpy. This confirms our SAXS results and suggests that laponite particles are participating in the network structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号