首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7977篇
  免费   227篇
  国内免费   24篇
化学   5111篇
晶体学   40篇
力学   381篇
综合类   5篇
数学   1266篇
物理学   1425篇
  2023年   46篇
  2022年   196篇
  2021年   218篇
  2020年   184篇
  2019年   187篇
  2018年   177篇
  2017年   130篇
  2016年   289篇
  2015年   224篇
  2014年   248篇
  2013年   455篇
  2012年   478篇
  2011年   532篇
  2010年   375篇
  2009年   363篇
  2008年   459篇
  2007年   448篇
  2006年   393篇
  2005年   316篇
  2004年   287篇
  2003年   214篇
  2002年   245篇
  2001年   120篇
  2000年   107篇
  1999年   74篇
  1998年   72篇
  1997年   77篇
  1996年   69篇
  1995年   54篇
  1994年   71篇
  1993年   75篇
  1992年   77篇
  1991年   50篇
  1990年   27篇
  1989年   31篇
  1988年   37篇
  1987年   46篇
  1986年   30篇
  1985年   48篇
  1984年   49篇
  1983年   52篇
  1982年   42篇
  1981年   63篇
  1980年   58篇
  1979年   59篇
  1978年   39篇
  1977年   36篇
  1976年   29篇
  1975年   25篇
  1974年   15篇
排序方式: 共有8228条查询结果,搜索用时 125 毫秒
71.
72.
73.
A series of novel bifluorene based systems was synthesised by a convergent approach by means of a Suzuki cross-coupling between 7,7′-bis-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-9,9,9′,9′-tetraoctyl-2,2′-bifluorene and suitable aryl-bromides. All the oligomers have been characterized by 1H, 13C NMR, FT-IR, UV-vis, PL spectroscopy and mass analyses. In particular, it has been demonstrated that the presence of strong electron donor (amines) or withdrawing (carboxylic esters) groups causes a bathochromic shift of the optical properties with respect to those of unsubstituted molecules. The effects of these functional groups on the HOMO-LUMO energy levels were investigated by cyclic voltammetry. Remarkably, the LUMO energy level of 7,7′-bis-[5′-carbodecaoxy-2,2′-bithiophen-5-yl]-9,9,9′,9′-tetraoctyl-2,2′-bifluorene (−3.07 eV) is strongly influenced by the presence of the ester functional group.  相似文献   
74.
The electrostatic complexation between beta-lactoglobulin and acacia gum was investigated at pH 4.2 and 25 degrees C. The binding isotherm revealed a spontaneous exothermic reaction, leading to a DeltaHobs = -2108 kJ mol(-1) and a saturation protein to polysaccharide weight mixing ratio of 2:1. Soluble electrostatic complexes formed in these conditions were characterized by a hydrodynamic diameter of 119 +/- 0.6 nm and a polydispersity index of 0.097. The effect of time on the interfacial and foaming properties of these soluble complexes was investigated at a concentration of 0.1 wt % at two different times after mixing (4 min, referred as t approximately 0 h and t = 24 h). At t approximately 0 h, the mixture is mainly made of aggregating soluble electrostatic complexes, whereas after 24 h these complexes have already insolubilize to form liquid coacervates. The surface elasticity, viscosity and phase angle obtained at low frequency (0.01 Hz) using oscillating bubble tensiometry revealed higher fluidity and less rigidity in the film formed at t approximately 0 h. This observation was confirmed by diminishing bubble experiments coupled with microscopy of the thin film. It was thicker, more homogeneous and contained more water at t approximately 0 h as compared to t = 24 h (thinner film, less water). This led to very different gas permeability's of Kt approximately 0 h = 0.021 cm s(-1) and Kt=24 h) = 0.449 cm s(-1), respectively. Aqueous foams produced with the beta-lactoglobulin/acacia gum electrostatic complexes or coacervates exhibited very different stability. The former (t approximately 0 h) had a stable volume, combining low drainage rate and mainly air bubble disproportionation as the destabilization mechanism. By contrast, using coacervates aged for 24 h, the foam was significantly less stable, combining fast liquid drainage and air bubble destabilization though fast gas diffusion followed by film rupture and bubble coalescence. The strong effect of time on the air/water interfacial properties of the beta-lactoglobulin/acacia gum electrostatic complexes can be understood by their reorganization at the interface to form a coacervate phase that is more fluid/viscous at t approximately 0 h vs rigid/elastic at t = 24 h.  相似文献   
75.
[reaction: see text] Aryl- and alkyl-derived azidoacyl radicals, generated from thiolesters by intramolecular homolytic substitution at the sulfur, can undergo five- and six-membered cyclization onto the azido moiety to give cyclized lactams.  相似文献   
76.
Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF). The mechanism of the formation of the aggregates in the nucleus remains uncertain. The present study demonstrated that the DNA-binding domain of p53 (p53C) underwent phase separation (PS) on the pathway to aggregation under various conditions. p53C phase separated in the presence of the crowding agent polyethylene glycol (PEG). Similarly, mutant p53C (M237I and R249S) underwent PS; however, the process evolved to a solid-like phase transition faster than that in the case of wild-type p53C. The data obtained by microscopy of live cells indicated that transfection of mutant full-length p53 into the cells tended to result in PS and phase transition (PT) in the nuclear compartments, which are likely the cause of the GoF effects. Fluorescence recovery after photobleaching (FRAP) experiments revealed liquid characteristics of the condensates in the nucleus. Mutant p53 tended to undergo gel- and solid-like phase transitions in the nucleus and in nuclear bodies demonstrated by slow and incomplete recovery of fluorescence after photobleaching. Polyanions, such as heparin and RNA, were able to modulate PS and PT in vitro. Heparin apparently stabilized the condensates in a gel-like state, and RNA apparently induced a solid-like state of the protein even in the absence of PEG. Conditions that destabilize p53C into a molten globule conformation also produced liquid droplets in the absence of crowding. The disordered transactivation domain (TAD) modulated both phase separation and amyloid aggregation. In summary, our data provide mechanistic insight into the formation of p53 condensates and conditions that may result in the formation of aggregated structures, such as mutant amyloid oligomers, in cancer. The pathway of mutant p53 from liquid droplets to gel-like and solid-like (amyloid) species may be a suitable target for anticancer therapy.

Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF).  相似文献   
77.
Reversible addition–fragmentation chain transfer (RAFT) dispersion polymerisation of methyl methacrylate (MMA) is performed in supercritical carbon dioxide (scCO2) with 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) present as chain transfer agent (CTA) and surprisingly shows good control over PMMA molecular weight. Kinetic studies of the polymerisation in scCO2 also confirm these data. By contrast, only poor control of MMA polymerisation is obtained in toluene solution, as would be expected for this CTA which is better suited for acrylates. In this regard, we select a range of CTAs and use them to determine the parameters that must be considered for good control in dispersion polymerisation in scCO2. A thorough investigation of the nucleation stage during the dispersion polymerisation reveals an unexpected “in situ two-stage” mechanism that strongly determines how the CTA works. Finally, using a novel computational solvation model, we identify a correlation between polymerisation control and degree of solubility of the CTAs. All of this ultimately gives rise to a simple, elegant and counterintuitive guideline to select the best CTA for RAFT dispersion polymerisation in scCO2.

RAFT dispersion polymerisation of methyl methacrylate is performed in scCO2 with 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) present as chain transfer agent (CTA) and surprisingly shows good control over PMMA molecular weight.  相似文献   
78.
The concept of metal–ligand cooperation opens new avenues for the design of catalytic systems that may offer alternative reactivity patterns to the existing ones. Investigations of this concept with ligands bearing a boron center in their skeleton established mechanistic pathways for the activation of small molecules in which the boron atom usually performs as an electrophile. Here, we show how this electrophilic behavior can be modified by the ligand trans to the boron center, evincing its ambiphilic nature. Treatment of diphosphinoboryl (PBP) nickel–methyl complex 1 with bis(catecholato)diboron (B2Cat2) allows for the synthesis of nickel(ii) bis-boryl complex 3 that promotes the clean and reversible heterolytic cleavage of dihydrogen leading to the formation of dihydroborate nickel complex 4. Density functional theory analysis of this reaction revealed that the heterolytic activation of H2 is facilitated by the cooperation of both boryl moieties and the metal atom in a concerted mechanism that involves a Ni(ii)/Ni(0)/Ni(ii) process. Contrary to 1, the boron atom from the PBP ligand in 3 behaves as a nucleophile, accepting a formally protic hydrogen, whereas the catecholboryl moiety acts as an electrophile, receiving the attack from the hydride-like fragment. This manifests the dramatic change in the electronic properties of a ligand by tuning the substituent trans to it and constitutes an unprecedented cooperative mechanism that involves two boryl ligands in the same molecule operating differently, one as a Lewis acid and the other one as a Lewis base, in cooperation with the metal. In addition, reactivity towards different nucleophiles such as amines or ammonia confirmed the electrophilic nature of the Bcat moiety, allowing the formation of aminoboranes.

A bis(boryl)nickel complex promotes the facile and reversible activation of H2 through a cooperative mechanism that involves the metal and both boryl moieties in a concerted five-center process.  相似文献   
79.
In this work, we have studied the influence of the pH on the synthesis and structural properties of the Ba0.77Ca0.23TiO3 nanopowders synthesized by a modified polymeric precursor method, in order to achieve non-agglomerated powders. Synthesis, morphology, thermal reactions, crystallite and average particle size of the synthesized powders were investigated through thermal analysis (DTA/TG), X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and Infrared spectroscopy. In summary, Ba0.77Ca0.23TiO3 nanopowders were synthesized for the first time at a relative low temperature (500 °C). It was also found that the alkalinity and acidity of the solution presented a great influence on the powder properties. The best results were obtained from solutions with pH = 8.5 and 11 whose nanopowders presented weakly agglomerate, with homogeneous particle size and a narrow size distribution (30–40 nm). This behavior could be explained based on the FT-IR results in which it was possible to see the increased of the chelation in higher pHs.  相似文献   
80.
A new HPLC method with fluorescence detection using pyridinium hydrobromide perbromide as a post-column derivatising agent has been developed to determine aflatoxin M1 in milk and cheese. The detection limits were 1 ng/kg for milk and 5 ng/kg for cheese. The calibration curve was linear from 0.001 to 0.1 ng injected. The method includes a preliminary C18-SPE clean-up and the average recoveries of Aflatoxin M1 from milk and cheese, spiked at levels of 25-75 ng/kg and 100-300 ng/kg, respectively, were 90 and 76%; the precision (RSDr) ranged from 1.7 to 2.6% for milk and from 3.5 to 6.5% for cheese. The method is rapid, easily automatable and therefore useful for accurate and precise screening of aflatoxin M1 in milk and cheese.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号