首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38053篇
  免费   8284篇
  国内免费   1402篇
化学   41795篇
晶体学   322篇
力学   602篇
数学   2490篇
物理学   2530篇
  2023年   19篇
  2022年   54篇
  2021年   230篇
  2020年   1276篇
  2019年   2605篇
  2018年   1055篇
  2017年   685篇
  2016年   3439篇
  2015年   3581篇
  2014年   3457篇
  2013年   4148篇
  2012年   3014篇
  2011年   2246篇
  2010年   2901篇
  2009年   2847篇
  2008年   2423篇
  2007年   1835篇
  2006年   1481篇
  2005年   1666篇
  2004年   1475篇
  2003年   1348篇
  2002年   2026篇
  2001年   1367篇
  2000年   1272篇
  1999年   371篇
  1998年   63篇
  1997年   54篇
  1996年   38篇
  1995年   26篇
  1994年   35篇
  1993年   51篇
  1992年   26篇
  1991年   27篇
  1990年   29篇
  1989年   17篇
  1988年   26篇
  1987年   22篇
  1986年   24篇
  1985年   48篇
  1984年   41篇
  1983年   25篇
  1982年   32篇
  1981年   32篇
  1980年   28篇
  1979年   22篇
  1978年   29篇
  1977年   26篇
  1976年   23篇
  1975年   13篇
  1974年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Mind how you go : The current strategies for the development of therapies for Alzheimer's disease are very diverse. Particular attention is given to the search for inhibitors (see picture for two examples) of the proteolytic enzyme β‐ and γ‐secretase, which inhibits the cleavage of the amyloid precursor proteins into amyloid β peptides, from which the disease‐defining deposits of plaque in the brains of Alzheimer's patients originates.

  相似文献   

972.
973.
An unprecedented C‐benzylation rearrangement reaction, catalyzed by palladium, is reported. The reaction proceeds by rearrangement leading to the direct synthesis of para or ortho benzyl‐substituted N‐methylanilines. The product is obtained in high regioselectivity, without the need to use a ligand for the catalytic process.  相似文献   
974.
The preparation of bicontinuous nanoporous covalent frameworks, which are promising for caging active enzymes, is demonstrated. The frameworks have three‐ dimensionally continuous, hydrophilic pores with widths varying between 5 and 30 nm. Enzymes were infiltrated into the bicontinuous pore by applying a pressured enzyme solution. The new materials and methods allowed the amount of caged proteins to be controlled precisely. The resulting enzyme‐loaded framework films could be recycled many times with nearly no loss of catalytic activity. Entropic trapping of proteins by a bicontinuous pore with the right size distribution is an unprecedented strategy toward facile in vitro utilization of biocatalysts.  相似文献   
975.
Zeolites are widely used in many commercial processes, mostly as catalysts or adsorbents. Understanding their intimate structure at the nanoscale is the key to control their properties and design the best materials for their ever increasing uses. Herein, we report a new and controllable fluoride treatment for the non‐discriminate extraction of zeolite framework cations. This sheds new light on the sub‐structure of commercially relevant zeolite crystals: they are segmented along defect zones exposing numerous nanometer‐sized crystalline domains, separated by low‐angle boundaries, in what were apparent single‐crystals. The concentration, morphology, and distribution of such domains analyzed by electron tomography indicate that this is a common phenomenon in zeolites, independent of their structure and chemical composition. This is a milestone to better understand their growth mechanism and rationally design superior catalysts and adsorbents.  相似文献   
976.
The reaction of new dinuclear gold(I) organometallic complexes containing mesityl ligands and bridging bidentate phosphanes [Au2(mes)2(μ‐LL)] (LL=dppe: 1,2‐bis(diphenylphosphano)ethane 1 a , and water‐soluble dppy: 1,2‐bis(di‐3‐pyridylphosphano)ethane 1 b ) with Ag+ and Cu+ lead to the formation of a family of heterometallic clusters with mesityl bridging ligands of the general formula [Au2M(μ‐mes)2(μ‐LL)][A] (M=Ag, A=ClO4?, LL=dppe 2 a , dppy 2 b ; M=Ag, A=SO3CF3?, LL=dppe 3 a , dppy 3 b ; M=Cu, A=PF6?, LL=dppe 4 a , dppy 4 b ). The new compounds were characterized by different spectroscopic techniques and mass spectrometry The crystal structures of [Au2(mes)2(μ‐dppy)] ( 1 b ) and [Au2Ag(μ‐mes)2(μ‐dppe)][SO3CF3] ( 3 a ) were determined by a single‐crystal X‐ray diffraction study. 3 a in solid state is not a cyclic trinuclear Au2Ag derivative but it gives an open polymeric structure instead, with the {Au2(μ‐dppe)} fragments “linked” by {Ag(μ‐mes)2} units. The very short distances of 2.7559(6) Å (Au? Ag) and 2.9229(8) Å (Au? Au) are indicative of gold–silver (metallophilic) and aurophilic interactions. A systematic study of their luminescence properties revealed that all compounds are brightly luminescent in solid state, at room temperature (RT) and at 77 K, or in frozen DMSO solutions with lifetimes in the microsecond range and probably due to the self‐aggregation of [Au2M(μ‐mes)2(μ‐LL)]+ units (M=Ag or Cu; LL=dppe or dppy) into an extended chain structure, through Au? Au and/or Au? M metallophilic interactions, as that observed for 3 a . In solid state the heterometallic Au2M complexes with dppe ( 2 a – 4 a ) show a shift of emission maxima (from ca. 430 to the range of 520‐540 nm) as compared to the parent dinuclear organometallic product 1 a while the complexes with dppy ( 2 b–4 b ) display a more moderate shift (505 for 1 b to a max of 563 nm for 4 b ). More importantly, compound [Au2Ag(μ‐mes)2(μ‐dppy)]ClO4 ( 2 b ) resulted luminescent in diluted DMSO solution at room temperature. Previously reported compound [Au2Cl2(μ‐LL)] (LL dppy 5 b ) was also studied for comparative purposes. The antimicrobial activity of 1–5 and Ag[A] (A=ClO4?, SO3CF3?) against Gram‐positive and Gram‐negative bacteria and yeast was evaluated. Most tested compounds displayed moderate to high antibacterial activity while heteronuclear Au2M derivatives with dppe ( 2 a – 4 a ) were the more active (minimum inhibitory concentration 10 to 1 μg mL?1). Compounds containing silver were ten times more active to Gram‐negative bacteria than the parent dinuclear compound 1 a or silver salts. Au2Ag compounds with dppy ( 2 b , 3 b ) were also potent against fungi.  相似文献   
977.
978.
In order to explore the potential propensity of the 1,1′‐methylenedipyridinium dication to form organic–inorganic hybrid ionic compounds by reaction with the appropriate halide metal salt, the organic–inorganic hybrid salts 1,1′‐methylenedipyridinium tetrachloridocuprate(II), (C11H12N2)[CuCl4], (I), and 1,1′‐methylenedipyridinium bis[tetrachloridoaurate(III)], (C11H12N2)[AuCl4]2, (II), were obtained by treatment of 1,1′‐methylenedipyridinium dichloride with CuCl2 and Na[AuCl4], respectively. Both hybrid salts were isolated as pure compounds, fully characterized by multinuclear NMR spectroscopy and their molecular structures confirmed by powder X‐ray diffraction studies. The crystal structures consist of discrete 1,1′‐methylenedipyridinium dications and [CuCl4]2− and [AuCl4] anions for (I) and (II), respectively. As expected, the dications form a butterfly shape; the CuII centre of [CuCl4]2− has a distorted tetrahedral configuration and the AuIII centre of [AuCl4] shows a square‐planar coordination. The ionic species of (I) and the dication of (II) each have twofold axial symmetry, while the two [AuCl4] anions are located on a mirror‐plane site. Both crystal structures are stabilized by intermolecular C—H...Cl hydrogen bonds and also by Cl...π interactions. It is noteworthy that, while the average intermolecular centroid–centroid pyridinium ring distance in (I) is 3.643 (8) Å, giving strong evidence for noncovalent π–π ring interactions, for (II), the shortest centroid–centroid distance between pyridinium rings of 5.502 (9) Å is too long for any significant π–π ring interactions, which might be due to the bulk of the two [AuCl4] anions.  相似文献   
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号