首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
化学   24篇
力学   1篇
数学   3篇
物理学   23篇
  2017年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有51条查询结果,搜索用时 250 毫秒
21.
A theoretical study of the effect of an atomically thin rare gas layer on the dynamics of excited electronic states at metal surfaces is presented for the case of a few mono-layers of Ar on a Cu(1 0 0) surface. We develop a 3D-microscopic model with predictive capabilities of the interaction of an electron with an Ar layer physisorbed on a metal surface. It takes into account the 3D structure of the Ar layer as well as its dielectric character. The dynamics of the excited electron on the surface is treated within a wave-packet propagation approach. The calculations show that two different types of excited states are present at the Ar/Cu(1 0 0) surface. (i) Image states that are repelled into vacuum as compared to their position on clean Cu(1 0 0) surfaces, leading to a decrease of their binding energies and to an increase of their lifetimes. (ii) Quantum-well resonances, corresponding to quasi-stationary states localised inside the Ar layer; they are associated with the quantisation of the conduction band in the finite size Ar layer. The present results on image states nicely agree with very recent time-resolved two-photon-photo-emission experiments by Berthold, Feulner and Höfer.  相似文献   
22.
The Cu adatom-induced localization of the two-dimensional Shockley surface state at the Cu(111) surface was identified from experimental and simulated scanning tunneling microscopy spectra. The localization gives rise to a resonance located just below the surface state band edge. The adatom-induced surface state localization is discussed in terms of the existence theorem for bound states in any attractive two-dimensional potential. We also identify adatom-induced resonance states deriving from atomic orbitals in both experimental and simulated spectra.  相似文献   
23.
Charge transfer during back scattering of a H- ion from a Cu(111) metal surface with Cs adsorbates is studied theoretically within a wave packet propagation approach. We show that the long lifetime of the Cs-localized state in the Cs/Cu(111) system deeply modifies the nature of projectile-surface charge transfer, suppressing its irreversible character. Back and forth electron transfer between the projectile and the adsorbate during the collision results in characteristic oscillations in the H- yield as a function of projectile energy.  相似文献   
24.
25.
A series of oxazolidine-4,5-diones 2 was thermally cleaved to cyclic imines 3 in excellent yield. This reaction was utilized in an efficient synthesis of a 3,4-dihydroisoquinoline-based nitrone 1b.  相似文献   
26.
The present study was designed to evaluate the potential of labeled low‐density lipoprotein with 111In using a lipid chelating agent (bis(stearylamide) of diethylenetriaminepentaacetic acid: L) to detect pancreatic tumors and melanoma in mice by gamma‐scintigraphy. We compare the biodistribution of radioactivity and scintigraphic images in nude mice heterotransplanted with human cancerous pancreatic duct cells (Capan‐1) and in mice transplanted with murine tumor cells (B16 melanoma). Biodistribution studies showed that radioactivity was twice as high in the Capan‐1 xenograft after injection of the radiolabel than after injection of radiometal alone, and 34‐fold higher in the B16 tumor. On gamma‐scintigraphic imaging, the Capan‐1 tumor was just visible, whereas the B16 melanoma was clearly imaged. The lack of contrast of the Capan‐1 tumor compared with the B16 melanoma could be due to a poor vascularization. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
27.
The photolysis of allene and propyne, two isomers of C(3)H(4), has been investigated in the excitation energy range of 7-30 eV using vacuum ultraviolet synchrotron radiation. The visible fluorescence excitation spectra of the excited neutral photofragments of both isomers were recorded within the same experimental conditions. Below the first ionization potential (IP), this fluorescence was too weak to be dispersed and possibly originated from C(2)H or CH(2) radicals. Above IP, three excited photofragments have been characterized by their dispersed emission spectra: the CH radical (A (2)Delta-X (2)Pi), the C(2) radical (d (3)Pi(g)-a (3)Pi(u), "Swan's bands"), and the H atom (4-2 and 3-2 Balmer lines). A detailed analysis of the integrated emission intensities allowed us to determine several apparition thresholds for these fragments, all of them being interpreted as rapid and barrierless dissociation processes on the excited potential energy surfaces. In the low energy range explored in this work, both isomers exhibit different intensity distributions in their fragment emission as a function of the photolysis energy, indicating that mutual allene<-->propyne isomerization is not fully completed before dissociation occurs. The effect of isomerization on the dissociation into excited fragments is present in the whole excitation energy range albeit less important in the 7-16 eV region; it gradually increases with increasing excitation energy. Above 19 eV, the fragment distribution is very similar for the two isomers.  相似文献   
28.
Methane photolysis has been performed at the two Vacuum UltraViolet (VUV) wavelengths, 121.6 nm and 118.2 nm, via a spectrally pure laser pump-probe technique. The first photon is used to dissociate methane (either at 121.6 nm or at 118.2 nm) and the second one is used to ionise the CH(2) and CH(3) fragments. The radical products, CH(3)(X), CH(2)(X), CH(2)(a) and C((1)D), have been selectively probed by mass spectrometry. In order to quantify the fragment quantum yields from the mass spectra, the photoionisation cross sections have been carefully evaluated for the CH(2) and CH(3) radicals, in two steps: first, theoretical ab initio approaches have been used in order to determine the pure electronic photoionisation cross sections of CH(2)(X) and CH(2)(a), and have been rescaled with respect to the measured absolute photoionisation cross section of the CH(3)(X) radical. In a second step, in order to take into account the substantial vibrational energy deposited in the CH(3)(X) and CH(2)(a) radicals, the variation of their cross sections near threshold has been simulated by introducing the pertinent Franck-Condon overlaps between neutral and cation species. By adding the interpolated values of CH quantum yields measured by Rebbert and Ausloos [J. Photochem., 1972, 1, 171-176], a complete set of fragment quantum yields has been derived for the methane photodissociation at 121.6 nm, with carefully evaluated 1σ uncertainties: Φ[CH(3)(X)] = 0.42 ± 0.05, Φ[CH(2)(a)] = 0.48 ± 0.05, Φ[CH(2)(X)] = 0.03 ± 0.08, Φ[CH(X)] = 0.07 ± 0.01. These new data have been measured independently of the H atom fragment quantum yield, subject to many controversies in the literature. From our results, we evaluate Φ(H) = 0.55 ± 0.17 at 121.6 nm. The quantum yields for the photolysis at 118.2 nm differ notably from those measured at 121.6 nm, with a substantial production of the CH(2)(X) fragment: Φ[CH(3)(X)] = 0.26 ± 0.04, Φ[CH(2)(a)] = 0.17 ± 0.05, Φ[CH(2)(X)] = 0.48 ± 0.06, Φ[CH(X)] = 0.09 ± 0.01, Φ(H) = 1.31 ± 0.13. These new data should bring reliable and essential inputs for the photochemical models of the Titan atmosphere.  相似文献   
29.
The absolute photoionization cross section of C(2)H(5) has been measured at 10.54 eV using vacuum ultraviolet (VUV) laser photoionization. The C(2)H(5) radical was produced in situ using the rapid C(2)H(6) + F → C(2)H(5) + HF reaction. Its absolute photoionization cross section has been determined in two different ways: first using the C(2)H(5) + NO(2) → C(2)H(5)O + NO reaction in a fast flow reactor, and the known absolute photoionization cross section of NO. In a second experiment, it has been measured relative to the known absolute photoionization cross section of CH(3) as a reference by using the CH(4) + F → CH(3) + HF and C(2)H(6) + F → C(2)H(5) + HF reactions successively. Both methods gave similar results, the second one being more precise and yielding the value: σ(C(2)H(5))(ion) = (5.6 ± 1.4) Mb at 10.54 eV. This value is used to calibrate on an absolute scale the photoionization curve of C(2)H(5) produced in a pyrolytic source from the C(2)H(5)NO(2) precursor, and ionized by the VUV beam of the DESIRS beamline at SOLEIL synchrotron facility. In this latter experiment, a recently developed ion imaging technique is used to discriminate the direct photoionization process from dissociative ionization contributions to the C(2)H(5)(+) signal. The imaging technique applied on the photoelectron signal also allows a slow photoelectron spectrum with a 40 meV resolution to be extracted, indicating that photoionization around the adiabatic ionization threshold involves a complex vibrational overlap between the neutral and cationic ground states, as was previously observed in the literature. Comparison with earlier photoionization studies, in particular with the photoionization yield recorded by Ruscic et al. is also discussed.  相似文献   
30.
The dynamics of nitrogen collisions with metals partially covered by alkali atoms is studied both experimentally and theoretically. Our attention focuses on the formation of N(1D) metastable ions and their interaction with the surface. We present the electron energy spectra induced by slow collisions of N+ ions with partially cesiated Pd(111) surfaces under grazing incidence. These spectra display, as a function of Cs coverage, a sharp feature which is due to the autodetachment of N(2p4, 1D) to the N(2p3, 4S) ground state. Our calculations, performed with the coupled angular mode (CAM) method on the basis of the resonant electron exchange between the nitrogen atom in states of the 2p3 configuration and the metal surface, consistently explain how negative ions formed close to the surface can survive against electron loss to the metal during the outgoing trajectory and can later decay as free ions. In order to understand the alkali coverage dependence of the N(1D)-N(4S) peak intensity, the local character of the nitrogen interaction with the surface partially covered by adsorbate atoms has been taken into account.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号