首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97179篇
  免费   17356篇
  国内免费   10301篇
化学   66749篇
晶体学   984篇
力学   6057篇
综合类   597篇
数学   11024篇
物理学   39425篇
  2024年   361篇
  2023年   2140篇
  2022年   3432篇
  2021年   3737篇
  2020年   4132篇
  2019年   3770篇
  2018年   3447篇
  2017年   3063篇
  2016年   4873篇
  2015年   4687篇
  2014年   5663篇
  2013年   7253篇
  2012年   8785篇
  2011年   8924篇
  2010年   5973篇
  2009年   5796篇
  2008年   6228篇
  2007年   5475篇
  2006年   5142篇
  2005年   4160篇
  2004年   3272篇
  2003年   2599篇
  2002年   2480篇
  2001年   2064篇
  2000年   1804篇
  1999年   2032篇
  1998年   1723篇
  1997年   1687篇
  1996年   1648篇
  1995年   1388篇
  1994年   1217篇
  1993年   1030篇
  1992年   900篇
  1991年   835篇
  1990年   690篇
  1989年   527篇
  1988年   386篇
  1987年   321篇
  1986年   338篇
  1985年   281篇
  1984年   160篇
  1983年   126篇
  1982年   107篇
  1981年   65篇
  1980年   43篇
  1979年   19篇
  1974年   4篇
  1968年   3篇
  1957年   31篇
  1936年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The article referenced above was first published online on 7 August 2007 with incorrect pagination; the pagination has now been corrected online and in print. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
62.
A novel chiral N‐propargylsulfamide monomer ( 1a ) and its enantiomer ( 1b ) were synthesized and polymerized with (nbd)Rh+B?(C6H5)4 as a catalyst providing poly(1) (poly( 1a ) and poly( 1b )) in high yields (≥99%). Poly(1) could take stable helices in less polar solvents (chloroform and THF), demonstrated by strong circular dichroism signals and UV–vis absorption peaks at about 415 nm and the large specific rotations; but in more polar solvents including DMF and DMSO, poly(1) failed to form helix. Quantitative evaluation with anisotropy factor showed that the helical screw sense had a relatively high thermal stability. These results together with the IR spectra measured in solvents showed that hydrogen bonding between the neighboring sulfamide groups is one of the main driving forces for poly(1) to adopt stable helices. In addition, copolymerization of monomer 1a and monomer 2 was conducted, the solubility of poly(1) was improved drastically. However, the copolymerization had adverse effects on the formation of stable helices in the copolymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 500–508, 2007  相似文献   
63.
Wide-angle X-ray scattering from presumed block copolymers of polypropylene (PP) and ethylene-propylene copolymer (EPR), i.e., PP-EPR and PP-EPR-PP, synthesized by sequential polymerization with δ-TiCl3? Et2AlCl, was examined and compared with WAXS of mechanical blends and chain-transfer mixtures of PP and EPR with comparable compositions. The peak at 2θ = 20° for both the copolymers and the mixtures was attributed to the γ modification of PP in EPR. A strong variation in the ratio of diffraction intensities I040/I110 of PP in block copolymers and mixtures was explained in terms of crystallite growth in different directions. Analysis of the patterns and calculation of crystallinity, crystallite size, and lattice parameters led to the conclusion that block structure existed in the prepared copolymers.  相似文献   
64.
Three novel functionalized polynorbornenes (PNB) with pendant dimethyl carboxylate group (carboxylates—acetate, propionate, and butyrate) are synthesized as a vinyl‐type with a palladium (II) catalyst in high yield. The effects of size of substitutents, molar ratio of monomer to catalyst, solvent polarity, reaction time, and temperature on the polymerization of exo‐norbornene dimethyl propionate were systematically investigated. The low molar ratio and temperature, as well as high polarity of solvent, and long reaction time, are favorable for the enhancement of the monomer conversion, especially, the solvent have an obvious effect on the catalyst activity. The resulting poly(cis‐norbornene‐exo‐2,3‐dimethyl carboxylates) (PNB‐dimethyl carboxylates) show good solubility in common organic solvent and high thermal stability up to 360 °C. The glass transition temperature was detected by DMA at 331, 324, and 318 °C for acetate, propionate, and butyrate, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3391–3399, 2007  相似文献   
65.
Ethylene–propylene copolymerization, using [(Ph)NC(R2)CHC(R1)O]2TiCl2 (R1 = CF3, Ph, or t‐Bu; R2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High‐molecular‐weight ethylene–propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R1 and R2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R1 and R2, one complex (R1 = CF3; R2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with 13C NMR to determine the methylene sequence distribution and number‐average sequence lengths of uninterrupted methylene carbons. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5846–5854, 2006  相似文献   
66.
Five novel fluorene‐containing polymers, poly[(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA1 ), poly[(1‐pentyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene) ( PFA2 ), poly[1‐decyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA3 ), poly[1‐phenyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA4 ), and poly[1‐(3,4‐difluorophenyl)‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA5 ) were synthesized by the polymerization of the corresponding fluorene‐substituted acetylenic monomers ( M1–M5), using WCl6, MoCl5, and TaCl5 as catalysts and n‐Bu4Sn as a cocatalyst. The synthesized polymers were thermally stable and readily soluble in common organic solvents. The degradation temperatures for a 5% weight loss of the polymers were ∼352–503 °C under nitrogen. PFA1–PFA5 show emission peaks from 402 to 590 nm. Besides, their electroluminescent properties were studied in heterostructure light‐emitting diodes (LEDs), using PFA2–PFA5 as an emitting layer. The PFA5 device revealed an orange‐red emission peak at 602 nm with a maximum luminescence of 923 cd/m2 at 8 V. A device with the ITO/PEDOT/ a mixture of PFA2 (98 wt %) and PFA5 (2 wt %)/Ca/Al showed near white emission. Its maximum luminance and current efficiency are 450 cd/m2 at 15 V and 1.3 cd/A, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 519–531, 2006  相似文献   
67.
Two series of novel fluorinated poly(ether imide)s (coded IIIA and IIIB ) were prepared from 2,6‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride and 2,7‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride, respectively, with various trifluoromethyl‐substituted aromatic bis(ether amine)s by a standard two‐step process with thermal or chemical imidization of the poly(amic acid) precursors. These fluorinated poly(ether imide)s showed good solubility in many organic solvents and could be solution‐cast into transparent, flexible, and tough films. These films were nearly colorless, with an ultraviolet–visible absorption edge of 364–386 nm. They also showed good thermal stability with glass‐transition temperatures of 221–298 °C, 10% weight loss temperatures in excess of 489 °C, and char yields at 800 °C in nitrogen greater than 50%. The 2,7‐substituted IIIB series also showed better solubility and higher transparency than the isomeric 2,6‐substituted IIIA series. In comparison with nonfluorinated poly (ether imide)s, the fluorinated IIIA and IIIB series showed better solubility, higher transparency, and lower dielectric constants and water absorption. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5909–5922, 2006  相似文献   
68.
The polymerization of cyclopentadiene (CPD) was effectively initiated by methylaluminoxane (MAO) to generate poly(cyclopentadiene) (polyCPD). The effects on the polymerization of some reaction parameters such as the monomer concentration, the initiator concentration, and solvents were investigated. The conversion of CPD was monitored with gas chromatography to investigate the reaction kinetics. The polymerization rate was proportional to the concentrations of MAO in the first order and of the CPD monomer in the second order, and a reasonable cationic polymerization mechanism was suggested on the basis of the kinetic study. PolyCPD obtained at a low temperature could be dissolved in toluene or chloroform, and this indicated lower cross‐coupling during the polymerization reaction. 1H NMR and IR analysis of the polymer indicated that there were almost equal amounts of 1,2‐enchainment and 1,4‐enchainment in the polymer chain. The measurement of polyCPD showed its unique properties as a potential candidate for stable wrappings or electronic packaging materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 264–272, 2006  相似文献   
69.
Amphiphilic biodegradable block copolymers [poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride)] were synthesized by the melt polycondensation of poly(ethylene glycol) and sebacic anhydride prepolymers. The chemical structure, crystalline nature, and phase behavior of the resulting copolymers were characterized with 1H NMR, Fourier transform infrared, gel permeation chromatography, and differential scanning calorimetry. Microphase separation of the copolymers occurred, and the crystallinity of the poly(sebacic anhydride) (PSA) blocks diminished when the sebacic anhydride unit content in the copolymer was only 21.6%. 1H NMR spectra carried out in CDCl3 and D2O were used to demonstrate the existence of hydrophobic PSA domains as the core of the micelle. In aqueous media, the copolymers formed micelles after precipitation from water‐miscible solvents. The effects on the micelle sizes due to the micelle preparation conditions, such as the organic phase, dropping rate of the polymer organic solution into the aqueous phase, and copolymer concentrations in the organic phase, were studied. There was an increase in the micelle size as the molecular weight of the PSA block was increased. The diameters of the copolymer micelles were also found to increase as the concentration of the copolymer dissolved in the organic phase was increased, and the dependence of the micelle diameters on the concentration of the copolymer varied with the copolymer composition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1271–1278, 2006  相似文献   
70.
A series of new polyimides were prepared via the polycondensation of (3‐amino‐2,4,6‐trimethylphenyl)‐(3′‐aminophenyl)methanone and aromatic dianhydrides, that is, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride. The structures of the polyimides were characterized by Fourier transform infrared and NMR measurements. The properties were evaluated by solubility tests, ultraviolet–visible analysis, differential scanning calorimetry, and thermogravimetric analysis. The two different meta‐position‐located amino groups with respect to the carbonyl bridge in the diamine monomer provided it with an unsymmetrical structure. This led to a restriction on the close packing of the resulting polymer chains and reduced interchain interactions, which contributed to the solubility increase. All the polyimides except that derived from BPDA had good solubility in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfone, and in common organic solvents, such as cyclohexanone and chloroform. In addition, these polyimides exhibited high glass‐transition values and excellent thermal properties, with an initial thermal decomposition temperature above 470 °C and glass‐transition temperatures in the range of 280–320 °C. The polyimide films also exhibited good transparency in the visible‐light region, with transmittance higher than 80% at 450 nm and a cutoff wavelength lower than 370 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1291–1298, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号