首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83143篇
  免费   418篇
  国内免费   416篇
化学   27572篇
晶体学   820篇
力学   6841篇
数学   32678篇
物理学   16066篇
  2020年   52篇
  2019年   57篇
  2018年   10452篇
  2017年   10283篇
  2016年   6136篇
  2015年   904篇
  2014年   361篇
  2013年   523篇
  2012年   3991篇
  2011年   10724篇
  2010年   5745篇
  2009年   6130篇
  2008年   6816篇
  2007年   8977篇
  2006年   448篇
  2005年   1515篇
  2004年   1744篇
  2003年   2139篇
  2002年   1176篇
  2001年   326篇
  2000年   366篇
  1999年   217篇
  1998年   248篇
  1997年   214篇
  1996年   285篇
  1995年   193篇
  1994年   161篇
  1993年   175篇
  1992年   132篇
  1991年   135篇
  1990年   137篇
  1989年   138篇
  1988年   138篇
  1987年   133篇
  1986年   144篇
  1985年   166篇
  1984年   131篇
  1983年   123篇
  1982年   141篇
  1981年   124篇
  1980年   135篇
  1979年   118篇
  1978年   108篇
  1977年   97篇
  1976年   72篇
  1975年   74篇
  1974年   81篇
  1973年   96篇
  1972年   57篇
  1914年   45篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
851.
The diamine, 4-aminophenyloxy-N-4-[(4-amiophenyloxy)benzylidene]aniline, was prepared via the nucleophilic substitution reaction and was polymerized with different dianhydrides either by one-step solution polymerization reaction or two-step procedure. The latter includes ring-opening polyaddition to give poly(amic acid), followed by cyclodehydration to polyimides. The inherent viscosity ranges from 0.61–0.79 dl/g. Some of the polymers were soluble in most of the organic solvents such as DMSO, DMF, DMAc, NMP, and m-cresol even at room temperature. The degradation temperature of the resultant polymers falls in the ranges from 240–500 °C in nitrogen with only 10% weight loss. Specific heat capacity at 200 °C ranges from 1.0929–2.6275 J g−1 k−1. The temperature at which the maximum degradation of the polymer occurs ranges from 600–630 °C. The glass transition temperature (Tg) values of the polyimides ranged from 185 to 272 °C. The activation energy and enthalpy of the polyimides ranged from 47.5–55.0 kJ/mole and 45.7–53.0 kJ/mole and the moisture absorption in the range of 0.23–0.72%.  相似文献   
852.
The use of copper radioisotopes in imaging and therapy has prompted an increased interest in chelators which form stable copper complexes, such as Cu(II)-azamacrocyclic complexes. The effects of charge, stability and the size of the macrocyclic backbone of the Cu(II)-azamacrocyclic complexes on biological behavior have been evaluated. Here we report a reversed-phase high-performance liquid chromatography (HPLC) method to separate several Cu(II)-azamacrocyclic complexes, including Cu(II) complexes of 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA), 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (CB-TE2A) and 4,10-bis(carboxymethyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane (CB-DO2A). Absorbance at 280 nm was used to monitor the complexes as they eluted from the reversed-phase column. The effects of the concentration of the buffer, the pH of the buffered mobile phase and the concentration of the organic modifier, methanol, on the separation were investigated. Separation of these copper complexes by ion-pair HPLC with the use of a mass spectrometry-compatible ion-pair reagent, triethylammonium acetate, in the mobile phase at pH 6.3 is also presented. The reversed-phase chromatographic conditions utilized also allow the pK(a)s of Cu-TETA and the log(k'w) values of Cu-CB-TE2A, Cu-TETA and Cu-CB-DO2A to be estimated.  相似文献   
853.
The increased demand for sustainability requires, among others, the development of new materials with enhanced corrosion resistance. Transition metal diborides are exceptional candidates, as they exhibit fascinating mechanical and thermal properties. However, at elevated temperatures and oxidizing atmospheres, their use is limited due to the fact of their inadequate oxidation resistance. Recently, it was found that chromium diboride doped with silicon can overcome this limitation. Further improvement of this protective coating requires detailed knowledge regarding the composition of the forming oxide layer and the change in the composition of the remaining thin film. In this work, an analytical method for the quantitative measurement of depth profiles without using matrix-matched reference materials was developed. Using this approach, based on the recently introduced online-LASIL technique, it was possible to achieve a depth resolution of 240 nm. A further decrease in the ablation rate is possible but demands a more sensitive detection of silicon. Two chromium diboride samples with different Si contents suffering an oxidation treatment were used to demonstrate the capabilities of this technique. The concentration profiles resembled the pathway of the formed oxidation layers as monitored with transmission electron microscopy. The stoichiometry of the oxidation layers differed strongly between the samples, suggesting different processes were taking place. The validity of the LASIL results was cross-checked with several other analytical techniques.  相似文献   
854.
Amphiphilic graft copolymer composed of poly(∈-caprolactone) and dextran was synthesized by ring opening polymerization of ∈-caprolactone initiated through the hydroxyl end of dextran in the presence of stannous 2-ethylhexanoate [Sn (oct)2] as a catalyst. It has been widely characterized by Fourier transform infrared spectroscopy, 1H NMR, and thermogravimetric analysis. Nanoparticles were prepared in aqueous medium by co-solvent evaporation technique at room temperature (25 °C). Hydrodynamic diameter and particle size were measured by dynamic light scattering spectroscopy and atomic force microscopy, respectively. Core-shell geometry of polymeric nanoparticle was characterized by fluorescence spectrophotometer using pyrene as a probe. Critical micelle concentration of polymer in triple distilled water decreased from 6.9 × 10−4 to 8.9 × 10−4 g/l with increasing hydrophobic moiety. Further, the physiological stability of the nanoparticles in phosphate buffer saline of pH 7.4 at 37 °C was evaluated, which showed promising in drug delivery system.  相似文献   
855.
Modeling the behavior of air plasma spray (APS) process, one of the challenges nowadays is to identify the parameter interdependencies, correlations and individual effects on coating properties, characteristics and influences on the in-service properties. APS modeling requires a global approach which considers the relationships between coating characteristics/ in-service properties and process parameters. Such an approach permits to reduce the development costs. This is why a robust methodology is needed to study these interrelated effects. Artificial intelligence based on fuzzy logic and artificial neural network concepts offers the possibility to develop a global approach to predict the coating characteristics so as to reach the required operating parameters. The model considered coating properties (porosity) and established the relationships with power process parameters (arc current intensity, total plasma gas flow rate, hydrogen content) on the basis of artificial intelligence rules. Consequently, the role and the effects of each power process parameter were discriminated. The specific case of the deposition of alumina–titania (Al2O3–TiO2, 13% by weight) by APS was considered.  相似文献   
856.
A novel heterogeneous strong acid catalyst was synthesized through the copolymerization of p-toluenesulfonic acid and paraformaldehyde and utilized for the synthesis of fructone. The results showed that the catalyst was very efficient for the reaction with the yield over 95%. The advantages of extremely high density of acidity, high thermal and chemical stability, low cost for the simple synthetic procedure, and reusability made the catalyst one of the best choices for the reaction.  相似文献   
857.
The effect of substrate concentration ranging from 0 to 300 g/L on fermentative hydrogen production by mixed cultures was investigated in batch tests using glucose as substrate. The experimental results showed that, at 35℃ and initial pH 7.0, during the fermentative hydrogen production, the hydrogen production potential and hydrogen production rate increased with increasing substrate concentration from 0 to 25 g/L. The maximal hydrogen production potential of 426.8 mL and maximal hydrogen pro-duction rate of 15.1 mL/h were obtained at the substrate concentration of 25 g/L. The maximal hydrogen yield and the maximal substrate degradation efficiency were respectively 384.3 mL/g glucose and 97.6%, at the substrate concentration of 2 g/L. The modified Logistic model could be used to describe the progress of cumulative hydrogen production in this study successfully. The Han-Levenspiel model could be used to describe the effect of substrate concentration on fermentative hydrogen production rate.  相似文献   
858.
The importance of anharmonic effect in dissociation of molecular systems especially clusters has been noted. In this paper, we shall study the effect of coupled anharmonic oscillator of the standard bilinear form (SBF) Morse oscillator (MO) potential on unimolecular reaction. We shall use the systematic theoretical approach, YL method, proposed by Yao and Lin (YAO L, et. al. J Phys Chem A, 2007, 111(29): 6722-6729), which can evaluate anharmonic effects on the rate constants based on the transition state theory. In treating the anharmonic effect with the Morse oscillator potential on unimolecular reactions under collision-free conditions by using the RRKM (Rice-Ramsperger-Kassel-Marcus) theory, the in-verse Laplace transformation of the partition functions was used to obtain the total amount of state and density of state by using the first-order and the second-order approximations of the saddle-point method. To demonstrate the anharmonic effect of the SBF Morse model, we choose some model systems and a real reaction as examples.  相似文献   
859.
Six different anionic species (fluoride, chloride, bromide, iodide, nitrate, and acetate) are tested for their abilities to form anionic adducts with neutral oligosaccharides that are detectable by MALDI-TOF mass spectrometry. Fluoride and acetate cannot form anionic adducts with the oligosaccharides in significant yields. However, bromide, iodide, and nitrate anionic adducts consistently appear in higher abundances relative to [M - H](-), just like the highly stable chloride adducts. Post-source decay (PSD) decompositions of Br(-), I(-), and NO(3)(-) adducts of oligosaccharides provide no structural information, i.e., they yield the respective anions as the main product ions. However, determination of linkage types is achieved by analysis of structurally-informative diagnostic peaks offered by negative ion PSD spectra of chloride adducts of oligosaccharides, whereas the relative peak intensities of pairs of diagnostic fragment ions allow differentiation of anomeric configurations of glycosidic bonds. Thus, simultaneous identification of the linkage types and anomeric configurations of glycosidic bonds is achieved. Our data indicate that negative ion PSD fragmentation patterns of chloride adducts of oligosaccharides are mainly determined by the linkage types. Correlation may exist between the linkage positions and fragmentation mechanisms and/or steric requirements for both cross-ring and glycosidic bond fragmentations. PSD of the chloride adducts of saccharides containing a terminal Glcalpha1-2Fru linkage also yields chlorine-containing fragment ions which appear to be specifically diagnostic for a fructose linked at the 2-position on the reducing end. This also allows differentiation from saccharides with a 1-1 linked pyranose on the same position.  相似文献   
860.
The dissociation of model RNA anions has been studied as a function of anion charge state and excitation amplitude using ion trap collisional activation. Similar to DNA anions, the precursor ion charge state of an RNA anion plays an important role in directing the preferred dissociation channels. Generally, the complementary c/y-ions from 5′ P-O bond cleavage dominate at low to intermediate charge states, while other backbone cleavages appear to a limited extent but increase in number and relative abundance at higher excitation energies. The competition between base loss, either as a neutral or as an anion, as well as the preference for the identity of the lost base are also observed to be charge-state dependent. To gain further insight into the partitioning of the dissociation products among the various possible channels, model dinucleotide anions have been subjected to a systematic study. In comparison to DNA, the 2′-OH group on RNA significantly facilitates the dissociation of the 5′ P-O bond. However, the degree of excitation required for a 5′ base loss and the subsequent 3′ C-O bond cleavage are similar for the analogous RNA and DNA dinucleotides. Data collected for protonated dinucleotides, however, suggest that the 2′-OH group in RNA can stabilize the glycosidic bond of a protonated base. Therefore, base loss from low charge state oligonucleotide anions, in which protonation of one or more bases via intramolecular proton transfer can occur, may also be stabilized in RNA anions relative to corresponding DNA anions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号