首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   784篇
  免费   32篇
  国内免费   4篇
化学   562篇
晶体学   2篇
力学   38篇
数学   69篇
物理学   149篇
  2022年   8篇
  2021年   12篇
  2020年   13篇
  2019年   12篇
  2018年   6篇
  2017年   13篇
  2016年   22篇
  2015年   18篇
  2014年   14篇
  2013年   52篇
  2012年   66篇
  2011年   74篇
  2010年   37篇
  2009年   22篇
  2008年   42篇
  2007年   36篇
  2006年   56篇
  2005年   52篇
  2004年   31篇
  2003年   29篇
  2002年   37篇
  2001年   9篇
  2000年   4篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   7篇
  1995年   8篇
  1994年   5篇
  1993年   6篇
  1992年   4篇
  1991年   6篇
  1990年   8篇
  1989年   3篇
  1988年   6篇
  1986年   3篇
  1985年   3篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
  1978年   6篇
  1977年   4篇
  1976年   7篇
  1975年   4篇
  1972年   4篇
  1971年   6篇
  1969年   5篇
排序方式: 共有820条查询结果,搜索用时 109 毫秒
61.
High-resolution mass spectrometry has become ever more accessible with improvements in instrumentation, such as modern FT-ICR and Orbitrap mass spectrometers. This has resulted in an increase in the number of articles submitted for publication quoting accurate mass data. There is a plethora of terms related to accurate mass analysis that are in current usage, many employed incorrectly or inconsistently. This article is based on a set of notes prepared by the authors for research students and staff in our laboratories as a guide to the correct terminology and basic statistical procedures to apply in relation to mass measurement, particularly for accurate mass measurement. It elaborates on the editorial by Gross in 1994 regarding the use of accurate masses for structure confirmation [1]. We have presented and defined the main terms in use with reference to the International Union of Pure and Applied Chemistry (IUPAC) recommendations for nomenclature and symbolism for mass spectrometry. The correct use of statistics and treatment of data is illustrated as a guide to new and existing mass spectrometry users with a series of examples as well as statistical methods to compare different experimental methods and datasets.  相似文献   
62.
Site‐directed spin labeling and EPR spectroscopy offer accurate, sensitive tools for the characterization of structure and function of macromolecules and their assemblies. A new rigid spin label, spirocyclohexyl nitroxide α‐amino acid and its N‐(9‐fluorenylmethoxycarbonyl) derivative, have been synthesized, which exhibit slow enough spin‐echo dephasing to permit accurate distance measurements by pulsed EPR spectroscopy at temperatures up to 125 K in 1:1 water/glycerol and at higher temperatures in matrices with higher glass transition temperatures. Distance measurements in the liquid nitrogen temperature range are less expensive than those that require liquid helium, which will greatly facilitate applications of pulsed EPR spectroscopy to the study of structure and conformation of peptides and proteins.  相似文献   
63.
Exact simulation of SDEs is a very important and challenging problem. In this paper we discuss exact simulation problems for jump-diffusion processes. Motivated by statistical applications, our main contribution is to propose an algorithm that performs exact simulation of a class of jump-diffusion bridges. We also present and discuss the existing methods for forward simulation and propose an extension of one of them to account for unbounded jump rate. Finally, the exact algorithms are compared to competing non-exact ones in some simulated examples.  相似文献   
64.
65.
Aza[n]helicene phosphole derivatives have been prepared from aza[n]helicene diynes by the Fagan–Nugent route. Their photophysical properties (UV/Vis absorption and emission behavior) have been evaluated. Their behavior as P,N chelates towards coordination to PdII and CuI has been investigated: metal–bis(aza[n]helicene phosphole) assemblies are formed by a highly stereoselective coordination process, as demonstrated by X‐ray crystallography. An aza[6]helicene phosphole bearing an enantiopure helicene part has been obtained, which allows the preparation of enantiopure PdII and CuI complexes with original topologies and high molar rotation (MR) and circular dichroism (CD). The structure–property relationship established from the experimental data has been studied in detail by theoretical studies (TDDFT calculations of UV/Vis, CD, and MR). Aza[n]helicene phosphole derivatives show π conjugation extended over the entire molecule, and its influence on the MR of aza[6]helicene phosphole 5 c has been demonstrated. Finally, it has been shown that the nature of the metal (coordination geometry and electronic interaction) can have a great impact on the amplitude of the chiroptical properties in metal–bis(aza[n]helicene phosphole) assemblies.  相似文献   
66.
67.
Time‐dependent morphology development in segmented polyureas obtained by the stoichiometric reactions between amine terminated poly(tetramethylene oxide) (PTMO) and aromatic diisocyanates were investigated. Polyureas were prepared by reacting aminopropyl terminated PTMO oligomer (Mn = 1100 g/mol) and various aromatic diisocyanates, such as 1,4‐phenylene diisocyanate (PPDI), 1,3‐phenylene diisocyanate (MPDI), diphenylmethane diisocyanate (MDI), and tolylene diisocyanate (TDI). Time‐dependent FTIR studies were conducted on thin films cast onto KBr discs, which were annealed at 200 °C for 10 min in an air oven. After removing from the oven, samples were placed into the FTIR spectrometer at room temperature, where time‐dependent spectra were recorded until equilibrium was reached. Time‐dependent peak reorganization in 3500–3100 cm?1 (N? H region), 1750–1450 cm?1 (C?O region or amide I and amide II regions), and 1180–1020 cm?1 (C? O? C) were monitored. Depending on the chemical structure and the symmetry of the diisocyanate, major differences were observed in the time needed to reach an equilibrium morphology in these homologous poly(ether urea) copolymers. Symmetric PPDI‐based polyurea reached equilibrium in about 1 h compared with its asymmetric MPDI‐based counterpart, which needed about 150 h. Microphase development of the MPDI urea was also characterized by AFM, which gave similar results. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 471–483, 2009  相似文献   
68.
69.
Ultrafast deactivation pathways bestow photostability on nucleobases and hence preserve the structural integrity of DNA following absorption of ultraviolet (UV) radiation. One controversial recovery mechanism proposed to account for this photostability involves electron‐driven proton transfer (EDPT) in Watson–Crick base pairs. The first direct observation is reported of the EDPT process after UV excitation of individual guanine–cytosine (G?C) Watson–Crick base pairs by ultrafast time‐resolved UV/visible and mid‐infrared spectroscopy. The formation of an intermediate biradical species (G[?H]?C[+H]) with a lifetime of 2.9 ps was tracked. The majority of these biradicals return to the original G?C Watson–Crick pairs, but up to 10 % of the initially excited molecules instead form a stable photoproduct G*?C* that has undergone double hydrogen‐atom transfer. The observation of these sequential EDPT mechanisms across intermolecular hydrogen bonds confirms an important and long debated pathway for the deactivation of photoexcited base pairs, with possible implications for the UV photochemistry of DNA.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号