首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   9篇
  国内免费   1篇
化学   60篇
数学   24篇
物理学   30篇
  2022年   2篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2016年   3篇
  2014年   1篇
  2013年   8篇
  2012年   7篇
  2011年   7篇
  2010年   5篇
  2009年   2篇
  2008年   11篇
  2007年   5篇
  2006年   10篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1976年   3篇
  1975年   1篇
  1973年   3篇
  1971年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
81.
Analyses of many different types of nonlinear wave equations indicate that a collapsing wave will transform into a universal blowup profile regardless of its initial shape; that is, the amplitude of the wave increases as the spatial extent decreases in a self-similar fashion. We show experimentally that the spatial profile of a collapsing optical wave evolves to a specific circularly symmetric shape, known as the Townes profile, for elliptically shaped or randomly distorted input beams. These results represent the first experimental confirmation of this universal collapsing behavior and provide deeper insight into the high-power filamentation of femtosecond laser pulses in air.  相似文献   
82.
A bireflection of a permutation θ is an ordered pair (φ, ψ) of permutations satisfying φ2 = ψ2 = 1, θ = φψ. The family of bireflections of a permutation is studied. As a corollary an expression for the number of dihedral groups over θ in SA is obtained.  相似文献   
83.
A self-starting optical pulse source based on mutually coupled optoelectronic oscillators is described. The system employs a phototransistor-based microwave oscillator that is coupled to a fiber cavity optoelectronic oscillator with an intracavity fiber parametric amplifier. It self-starts and exhibits 3 ps pulses at a rate of 10 GHz with extremely low jitter of 30, 29, and 40 fs (for integration bandwidths of 100 Hz-15 kHz, 500 Hz-1 MHz, and 100 Hz-1 MHz, respectively).  相似文献   
84.
Dehydrogenation or oxidative dehydrogenation (ODH) of alkanes to produce alkenes directly from natural gas/shale gas is gaining in importance. Ti3AlC2, a MAX phase, which hitherto had not been used in catalysis, efficiently catalyzes the ODH of n‐butane to butenes and butadiene, which are important intermediates for the synthesis of polymers and other compounds. The catalyst, which combines both metallic and ceramic properties, is stable for at least 30 h on stream, even at low O2:butane ratios, without suffering from coking. This material has neither lattice oxygens nor noble metals, yet a unique combination of numerous defects and a thin surface Ti1?yAlyO2?y/2 layer that is rich in oxygen vacancies makes it an active catalyst. Given the large number of compositions available, MAX phases may find applications in several heterogeneously catalyzed reactions.  相似文献   
85.
Catalysts are conventionally designed with a focus on enthalpic effects, manipulating the Arrhenius activation energy. This approach ignores the possibility of designing materials to control the entropic factors that determine the pre-exponential factor. Here we investigate a new method of designing supported Pt catalysts with varying degrees of molecular confinement at the active site. Combining these with fast and precise online measurements, we analyse the kinetics of a model reaction, the platinum-catalysed hydrolysis of ammonia borane. We control the environment around the Pt particles by erecting organophosphonic acid barriers of different heights and at different distances. This is done by first coating the particles with organothiols, then coating the surface with organophosphonic acids, and finally removing the thiols. The result is a set of catalysts with well-defined “empty areas” surrounding the active sites. Generating Arrhenius plots with >300 points each, we then compare the effects of each confinement scenario. We show experimentally that confining the reaction influences mainly the entropy part of the enthalpy/entropy trade-off, leaving the enthalpy unchanged. Furthermore, we find this entropy contribution is only relevant at very small distances (<3 Å for ammonia borane), where the “empty space” is of a similar size to the reactant molecule. This suggests that confinement effects observed over larger distances must be enthalpic in nature.

Designable materials help pinpoint the role of steric confinement in catalysis.  相似文献   
86.
87.
Scattered Compact Ordered Spaces (SCOS) are studied with respect to their well ordered images and preimages. Typical results:
  1. A SCOS is homeomorphic to an ordinal iff it has no pit point (a pit in an ordered space is one with infinite left and right cofinalities, one of which is uncountable).
  2. A SCOS of characteristic <μ,m> is mappable onto and includes ωμ·m+1; it is also an image of ωμ·(2m)+1. The SCOSs are characterized by: Theorem 5: Let K be a Hausdorff space. The following conditions are equivalent:
  3. K is homeomorphic to a compact scattered ordered space.
  4. K is an order-two image of a compact ordinal. A.M.S. (MOS) Subject Classification: Primary: 54F05, 54F65, 06A45 Secondary: 54D30.
  相似文献   
88.
89.
Poly(styrene‐co‐divinylbenzene) monolithic stationary phases with two different domain sizes were synthesized by a thermally initiated free‐radical copolymerization in capillary columns. The morphology was investigated at the meso‐ and macroscopic level using complementary physical characterization techniques aiming at better understanding the effect of column structure on separation performance. Varying the porogenic solvent ratio yielded materials with a mode pore size of 200 nm and 1.5 μm, respectively. Subsequently, nano‐liquid chromatography experiments were performed on 200 μm id × 200 mm columns using unretained markers, linking structure inhomogeneity to eddy dispersion. Although small‐domain‐size monoliths feature a relatively narrow macropore‐size distribution, their homogeneity is compromised by the presence of a small number of large macropores, which induces a significant eddy‐dispersion contribution to band broadening. The small‐domain size monolith also has a relatively steep mass‐transfer term, compared to a monolith containing larger globules and macropores. Structural inhomogeneity was also studied at the mesoscopic level using gas‐adsorption techniques combined with the non‐local‐density‐function‐theory. This model allows to accurately determine the mesopore properties in the dry state. The styrene‐based monolith with small domain size has a distinctive trimodal mesopore distribution with pores of 5, 15, and 25 nm, whereas the monolith with larger feature sizes only contains mesopores around 5 nm in size.  相似文献   
90.
A method is presented for the high-throughput monitoring of reaction kinetics in homogeneous catalysis, running up to 25 coupling reactions in a single reaction vessel. This method is demonstrated and validated on the Sonogashira reaction, analyzing the kinetics for almost 500 coupling reactions. First, one-pot reactions of phenylacetylene with a set of 20 different meta- and para-substituted aryl bromides were analyzed in the presence of 17 different Pd-phosphine complexes. In addition, the temperature-dependent Sonogashira reactions were examined for 21 different ArX (X=Cl, Br, I) substrates, and the corresponding activation enthalpies and entropies were determined by means of Eyring plots: ArI (DeltaH(not equal)=48-62 kJ mol(-1); DeltaS(not equal)=-71--39 J mol(-1) K; NO(2)-->OMe), ArBr (DeltaH(not equal)=54-82 kJ mol(-1), DeltaS(not equal)=-55-11 J mol(-1) K), and ArCl (DeltaH(not equal)=95-144 kJ mol(-1), DeltaS(not equal)=-6-100 J mol(-1) K). DFT calculations established a linear correlation of DeltaH( not equal) and the Kohn-Sham HOMO energies of ArX (X=Cl, Br, I) and confirmed their involvement in the rate-limiting step. However, despite different C--X bond energies, aryl iodides and electron-deficient aryl bromides showed similar activation parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号