首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   789篇
  免费   11篇
  国内免费   3篇
化学   467篇
晶体学   7篇
力学   36篇
数学   110篇
物理学   183篇
  2023年   7篇
  2022年   20篇
  2021年   15篇
  2020年   11篇
  2019年   10篇
  2018年   7篇
  2017年   7篇
  2016年   19篇
  2015年   17篇
  2014年   9篇
  2013年   34篇
  2012年   55篇
  2011年   45篇
  2010年   16篇
  2009年   32篇
  2008年   27篇
  2007年   41篇
  2006年   29篇
  2005年   38篇
  2004年   32篇
  2003年   31篇
  2002年   23篇
  2001年   15篇
  2000年   12篇
  1999年   6篇
  1998年   11篇
  1997年   9篇
  1996年   19篇
  1995年   17篇
  1994年   16篇
  1993年   8篇
  1992年   9篇
  1991年   11篇
  1990年   9篇
  1988年   6篇
  1986年   8篇
  1985年   9篇
  1984年   10篇
  1983年   6篇
  1982年   6篇
  1981年   8篇
  1980年   10篇
  1979年   3篇
  1978年   5篇
  1977年   6篇
  1975年   4篇
  1974年   6篇
  1973年   3篇
  1966年   3篇
  1934年   6篇
排序方式: 共有803条查询结果,搜索用时 46 毫秒
31.
An in‐depth study of the cobalt‐catalyzed [2+2+2] cycloaddition between yne‐ynamides and nitriles to afford aminopyridines has been carried out. About 30 nitriles exhibiting a broad range of steric demand and electronic properties have been evaluated, some of which open new perspectives in metal‐catalyzed arene formation. In particular, the use of [CpCo(CO)(dmfu)] (dmfu=dimethyl fumarate) as a precatalyst made possible the incorporation of electron‐deficient nitriles into the pyridine core. Modification of the substitution pattern at the yne‐ynamide allows the regioselectivity to be switched toward 3‐ or 4‐aminopyridines. Application of this synthetic methodology to the construction of the aminopyridone framework using a yne‐ynamide and an isocyanate was also briefly examined. DFT computations suggest that 3‐aminopyridines are formed by formal [4+2] cycloaddition between the nitrile and the intermediate cobaltacyclopentadiene, whereas 4‐aminopyridines arise from an insertion pathway.  相似文献   
32.
Velocity measurements conducted with particle image velocimetry (PIV) often exhibit regions where the flow motion cannot be evaluated. The principal reasons for this are the absence of seeding particles or limited optical access for illumination or imaging. Additional causes can be laser light reflections and unwanted out-of-focus effects. As a consequence, the velocity field measured with PIV contains regions where no velocity information is available, that is gaps. This work investigates the suitability of using the unsteady incompressible Navier–Stokes equations to obtain accurate estimates of the local transient velocity field in small gaps; the present approach applies to time-resolved two-dimensional experiments of incompressible flows. The numerics are based on a finite volume discretization with partitioned time-stepping to solve the governing equations. The measured velocity distribution at the gap boundary is taken as time-varying boundary condition, and an approximate initial condition inside the gap is obtained via low-order spatial interpolation of the velocity at the boundaries. The influence of this I.C. is seen to diminish over time, as information is convected through the gap. Due to the form of the equations, no initial or boundary conditions on the pressure are required. The approach is evaluated by a time-resolved experiment where the true solution is known a priori. The results are compared with a boundary interpolation approach. Finally, an application of the technique to an experiment with a gap of complex shape is presented.  相似文献   
33.
34.
35.
Abstract

Enantiomerically pure 2-hydroxyalkyl, 2-aminoalkyl and 2-iminoalkyl ferrocenyl p-tolylsulfides are easily prepared in good yields and with complete diastereocontrol from (S)-(2-p-tolylthio)ferrocencarboxyaldehyde. 2-Iminoalkyl ferrocenyl derivatives can be used as ligands in asymmetric catalysis and as starting materials for asymmetric Staudinger reaction.  相似文献   
36.
The mechanism of reactions occurring in solution can be investigated also in the gas phase by suited mass spectrometric techniques, which allow to highlight fundamental mechanistic features independent of the influence of the medium and to clarifying controversial hypotheses proposed in solution studies. In this work, we report a gas-phase study performed by electrospray triple stage quadrupole mass spectrometry (ESI-TSQ/MS) on the dehydration of d-xylose, leading mainly to the formation of 2-furaldehyde (2-FA). It is generally known in carbohydrate chemistry that the thermal acid catalyzed dehydration of pentoses leads to the formation of 2-FA, but several aspects on the solution-phase mechanism are controversial. Here, gaseous reactant ions corresponding to protonated xylose molecules obtained from ESI of a solution containing d-xylose and ammonium acetate as protonating reagent were allowed to undergo collisionally activated decomposition (CAD) into the triple stage quadrupole analyzer. The product ion mass spectra of protonated xylose are characterized by the presence of ionic intermediates arising from xylose dehydration, which were structurally characterized by their fragmentation patterns. As expected, the xylose triple dehydration leads to the formation of the ion at m/z 97, corresponding to protonated 2-FA. On the basis of mass spectrometric evidences, we demonstrated that in the gas phase, the formation of 2-FA involves protonation at the OH group bound to the C1 atom of the sugar, the first ionic intermediate being characterized by a cyclic structure. Finally, energy resolved product ion mass spectra allowed to obtain information on the energetic features of the d-xylose→2-FA conversion.
Figure
?  相似文献   
37.
The direct application of corrosion inhibitors on metal surfaces is potentially dangerous for the environment and the restoration operators, thus new conservation strategies are mandatory. In this study, two copper corrosion inhibitors, 1H-benzotriazole (BTA) and 5-phenyl-1H-tetrazole (PT), are encapsulated in a silica nanocontainer, for future application in smart coatings, with the aim to reduce the amount of chemicals used in treatments, their dispersion in the environment and the direct exposure of the operators to these chemicals. In particular, composite silica nanocapsules, containing the corrosion inhibitors, are prepared via one-step synthesis, based on mini-emulsion polymerisation processes.The morphology, structure, and texture of these loaded silica nanocontainers are characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 physisorption (BET/BJH). Micro-Raman spectroscopy (RS) is performed to characterise the composition. UV–visible spectroscopy and thermal analysis (TG/DSC) are performed for the loading and encapsulation efficiency (L%, EE%) study.Synthesised nanocapsules show a core-shell structure and, when loaded with the inhibitors, have size ranging from about 130 to 170 nm and a BET surface area of the order of 800 m2/g. The EE% is maximum in the case of BTA and decreases to ~52% in the case of PT.  相似文献   
38.
Several classes of flavonoids, such as anthocyanins, flavonols, flavanols, and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues. Even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D exchange processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism.  相似文献   
39.
Solute–solvent interactions are proxies for understanding how the electronic density of a chromophore interacts with the environment in a more exhaustive way. The subtle balance between polarization, electrostatic, and non-bonded interactions need to be accurately described to obtain good agreement between simulations and experiments. First principles approaches providing accurate configurational sampling through molecular dynamics may be a suitable choice to describe solvent effects on solute chemical–physical properties and spectroscopic features, such as optical absorption of dyes. In this context, accurate energy potentials, obtained by hybrid implicit/explicit solvation methods along with employing nonperiodic boundary conditions, are required to represent bulk solvent around a large solute–solvent cluster. In this work, a novel strategy to simulate methanol solutions is proposed combining ab initio molecular dynamics, a hybrid implicit/explicit flexible solvent model, nonperiodic boundary conditions, and time dependent density functional theory. As case study, the robustness of the proposed protocol has been gauged by investigating the microsolvation and electronic absorption of the anionic green fluorescent protein chromophore in methanol and aqueous solution. Satisfactory results are obtained, reproducing the microsolvation layout of the chromophore and, as a consequence, the experimental trends shown by the optical absorption in different solvents.  相似文献   
40.
Despite considerable advances in recent years, challenges in delivery and storage of biological drugs persist and may delay or prohibit their clinical application. Though nanoparticle-based approaches for small molecule drug encapsulation are mature, encapsulation of proteins remains problematic due to destabilization of the protein. Reverse micelles composed of decylmonoacyl glycerol (10MAG) and lauryldimethylamino-N-oxide (LDAO) in low-viscosity alkanes have been shown to preserve the structure and stability of a wide range of biological macromolecules. Here, we present a first step on developing this system as a future platform for storage and delivery of biological drugs by replacing the non-biocompatible alkane solvent with solvents currently used in small molecule delivery systems. Using a novel screening approach, we performed a comprehensive evaluation of the 10MAG/LDAO system using two preparation methods across seven biocompatible solvents with analysis of toxicity and encapsulation efficiency for each solvent. By using an inexpensive hydrophilic small molecule to test a wide range of conditions, we identify optimal solvent properties for further development. We validate the predictions from this screen with preliminary protein encapsulation tests. The insight provided lays the foundation for further development of this system toward long-term room-temperature storage of biologics or toward water-in-oil-in-water biologic delivery systems.  相似文献   
[首页] « 上一页 [1] [2] [3] 4 [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号