首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   35篇
  国内免费   4篇
化学   808篇
晶体学   8篇
力学   14篇
数学   108篇
物理学   75篇
  2023年   8篇
  2022年   15篇
  2021年   23篇
  2020年   9篇
  2019年   15篇
  2018年   14篇
  2017年   8篇
  2016年   15篇
  2015年   24篇
  2014年   32篇
  2013年   53篇
  2012年   69篇
  2011年   78篇
  2010年   51篇
  2009年   37篇
  2008年   52篇
  2007年   62篇
  2006年   59篇
  2005年   51篇
  2004年   50篇
  2003年   53篇
  2002年   38篇
  2001年   13篇
  2000年   14篇
  1999年   10篇
  1998年   11篇
  1997年   12篇
  1996年   7篇
  1995年   9篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1990年   4篇
  1989年   4篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1977年   4篇
  1975年   4篇
  1937年   3篇
  1932年   7篇
  1925年   4篇
  1911年   4篇
  1908年   3篇
排序方式: 共有1013条查询结果,搜索用时 15 毫秒
71.
Superoxide reductase is a nonheme iron metalloenzyme that detoxifies superoxide anion radicals O(2)(?-) in some microorganisms. Its catalytic mechanism was previously proposed to involve a single ferric iron (hydro)peroxo intermediate, which is protonated to form the reaction product H(2)O(2). Here, we show by pulse radiolysis that the mutation of the well-conserved lysine 48 into isoleucine in the SOR from Desulfoarculus baarsii dramatically affects its reaction with O(2)(?-). Although the first reaction intermediate and its decay are not affected by the mutation, H(2)O(2) is no longer the reaction product. In addition, in contrast to the wild-type SOR, the lysine mutant catalyzes a two-electron oxidation of an olefin into epoxide in the presence of H(2)O(2), suggesting the formation of iron-oxo intermediate species in this mutant. In agreement with the recent X-ray structures of the peroxide intermediates trapped in a SOR crystal, these data support the involvement of lysine 48 in the specific protonation of the proximal oxygen of the peroxide intermediate to generate H(2)O(2), thus avoiding formation of iron-oxo species, as is observed in cytochrome P450. In addition, we proposed that the first reaction intermediate observed by pulse radiolysis is a ferrous-iron superoxo species, in agreement with TD-DFT calculations of the absorption spectrum of this intermediate. A new reaction scheme for the catalytical mechanism of SOR with O(2)(?-) is presented in which ferrous iron-superoxo and ferric hydroperoxide species are reaction intermediates, and the lysine 48 plays a key role in the control of the evolution of iron peroxide intermediate to form H(2)O(2).  相似文献   
72.
73.
A study on the preparation of N-alkylglycines (peptoids) that contain tertiary amino residues on the N-alkyl side chains is reported. The appropriate combination of the submonomer strategy with N-alkylglycine monomer couplings depending upon the structure of the N-alkyl side chain that must be incorporated into the peptoid is determinant for the efficiency of the synthetic pathway. The application of this strategy to the preparation of SICHI, an N-alkyglycine trimer containing tertiary amino residues in the three N-alkyl branches, and that has been identified as a potent Semaphorin 3A inhibitor, is presented.  相似文献   
74.
In this work, a new biosensor was prepared through immobilization of bovine liver catalase in a photoreticulated poly (vinyl alcohol) membrane at the surface of a conductometric transducer. This biosensor was used to study the kinetics of catalase–H202 reaction and its inhibition by cyanide. Immobilized catalase exhibited a Michaelis–Menten behaviour at low H202 concentrations (< 100 mM) with apparent constant KMapp = 84 ± 3 mM and maximal initial velocity VMapp = 13.4 μS min? 1. Inhibition by cyanide was found to be non-competitive and inhibition binding constant Ki was 13.9 ± 0.3 μM. The decrease of the biosensor response by increasing cyanide concentration was linear up to 50 μM, with a cyanide detection limit of 6 μM. In parallel, electrochemical characteristics of the catalase/PVA biomembrane and its interaction with cyanide were studied by cyclic voltammetry and impedance spectroscopy. Addition of the biomembrane onto the gold electrodes induced a significant increase of the interfacial polarization resistance RP. On the contrary, cyanide binding resulted in a decrease of Rp proportional to KCN concentration in the 4 to 50 μM range. Inhibition coefficient I50 calculated by this powerful label-free and substrate-free technique (24.3 μM) was in good agreement with that determined from the substrate-dependent conductometric biosensor (24.9 μM).  相似文献   
75.
The efficiency of the deprotocupration–aroylation of 2-chloropyridine using lithiocuprates prepared from CuX (X=Cl, Br) and LiTMP (TMP=2,2,6,6-tetramethylpiperidido, 2 equiv) was investigated. CuCl was identified as a more suitable copper source than CuBr for this purpose. Different diaryl ketones bearing a halogen at the 2 position of one of the aryl groups were synthesized in this way from azines and thiophenes. These were then involved in palladium-catalyzed ring closure: substrates underwent expected CH-activation-type arylation to afford fluorenone-type compounds, and were also subjected to cyclization reactions leading to xanthones, notably in the presence of oxygen-containing substituents or reagents.  相似文献   
76.
Summary Two high-performance liquid chromatography (HPLC) techniques were developed for the determination of binding constants in the interaction of serum albumin with L-tryptophan: internal calibration and external calibration. The results obtained were compared with those obtained by the classical method of equilibrium dialysis and by gel filtration. While all the methods are equally reliable, the internal and external calibration techniques seem to be superior in their simplicity, speed and convenience.  相似文献   
77.
Bachus et al. [1] recently described a new derivatisation method using 2-furoyl chloride for the characterisation of mixtures of polyethoxylated alcohols and their corresponding sulfates. This paper deals with the control of the derivatisation steps; hydrolysis and extraction conditions were optimised. The method is extended to the characterisation of alkyl sulfosuccinates, alkyl sulfoacetates and alkyl phosphates and to the analysis of residual polyethoxylated alcohols in surfactants. Extraction of non-ionic compounds using solid-phase extraction cartridges was performed before derivatisation. Residual amounts of alcohol were determined in five commercial anionic surfactants. Moreover, direct derivatisation without preliminary SPE in the same anionic surfactants proved to be efficient for dry samples.  相似文献   
78.
The aim of this work was to develop a reliable and efficient analytical method to characterise and differentiate saxitoxin analogues (STX), including sulphated (gonyautoxins, GTX) and non‐sulphated analogues. For this purpose, hydrophilic interaction liquid chromatography (HILIC) was used to separate sulphated analogues. We also resorted to ion mobility spectrometry to differentiate the STX analogues because this technique adds a new dimension of separation based on ion gas phase conformation. Positive and negative ionisation modes were used for gonyautoxins while positive ionisation mode was used for non‐sulphated analogues. Subsequently, the coupling of these three complementary techniques, HILIC‐IM‐MS, permitted the separation and identification of STX analogues; isomer differentiation was achieved in HILIC dimension while non‐sulphated analogues were separated in the IM‐MS dimension. Additional structural characteristics concerning the conformation of STXs could be obtained using IM‐MS measurements. Thus, the collision cross sections (CCS) of STXs are reported for the first time in the positive ionisation mode. These experimental CCSs correlated well with the calculated CCS values using the trajectory method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
79.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   
80.
The effect of different concentrations of single‐walled carbon nanotubes (SWNTs) on the nonisothermal crystallization kinetics, morphology, and mechanical properties of polypropylene (PP) matrix composites obtained by melt compounding was investigated by means of X‐ray diffraction, differential scanning calorimetry, optical and scanning electron microscopy, and dynamic mechanical thermal analysis. Microscopy showed well‐dispersed nanotube ropes together with small and large aggregates. The modulus was found to increase by about 75% at a level of 0.5 wt % nanotubes. The SWNTs displayed a clear nucleating effect on the PP crystallization, favoring the α crystalline form rather than the β form. The crystallization kinetics analysis showed a significant increase in activation energy on incorporating nanotubes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2445–2453, 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号