首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3389篇
  免费   98篇
  国内免费   11篇
化学   2295篇
晶体学   24篇
力学   54篇
数学   295篇
物理学   830篇
  2022年   25篇
  2021年   44篇
  2020年   47篇
  2019年   37篇
  2018年   32篇
  2017年   32篇
  2016年   53篇
  2015年   55篇
  2014年   59篇
  2013年   164篇
  2012年   136篇
  2011年   166篇
  2010年   81篇
  2009年   62篇
  2008年   129篇
  2007年   152篇
  2006年   164篇
  2005年   126篇
  2004年   135篇
  2003年   130篇
  2002年   113篇
  2001年   72篇
  2000年   93篇
  1999年   50篇
  1998年   46篇
  1997年   41篇
  1996年   53篇
  1995年   58篇
  1994年   44篇
  1993年   53篇
  1992年   48篇
  1991年   41篇
  1990年   44篇
  1989年   27篇
  1988年   27篇
  1987年   41篇
  1986年   43篇
  1985年   52篇
  1984年   57篇
  1983年   31篇
  1982年   37篇
  1981年   47篇
  1980年   48篇
  1979年   50篇
  1978年   40篇
  1977年   48篇
  1976年   49篇
  1975年   35篇
  1974年   34篇
  1973年   46篇
排序方式: 共有3498条查询结果,搜索用时 15 毫秒
81.
Modeling reactivity with chemical reaction networks could yield fundamental mechanistic understanding that would expedite the development of processes and technologies for energy storage, medicine, catalysis, and more. Thus far, reaction networks have been limited in size by chemically inconsistent graph representations of multi-reactant reactions (e.g. A + B → C) that cannot enforce stoichiometric constraints, precluding the use of optimized shortest-path algorithms. Here, we report a chemically consistent graph architecture that overcomes these limitations using a novel multi-reactant representation and iterative cost-solving procedure. Our approach enables the identification of all low-cost pathways to desired products in massive reaction networks containing reactions of any stoichiometry, allowing for the investigation of vastly more complex systems than previously possible. Leveraging our architecture, we construct the first ever electrochemical reaction network from first-principles thermodynamic calculations to describe the formation of the Li-ion solid electrolyte interphase (SEI), which is critical for passivation of the negative electrode. Using this network comprised of nearly 6000 species and 4.5 million reactions, we interrogate the formation of a key SEI component, lithium ethylene dicarbonate. We automatically identify previously proposed mechanisms as well as multiple novel pathways containing counter-intuitive reactions that have not, to our knowledge, been reported in the literature. We envision that our framework and data-driven methodology will facilitate efforts to engineer the composition-related properties of the SEI – or of any complex chemical process – through selective control of reactivity.

A chemically consistent graph architecture enables autonomous identification of novel solid-electrolyte interphase formation pathways from a massive reaction network.  相似文献   
82.
The source of the effect of N-alkylation on the redox properties of Ni(II/I) and Cr(III/II) cyclam complexes has been investigated using DFT calculations. The structures of the anhydrous and hydrated complexes were optimized in the gas phase, and single point calculations were performed in a polarized continuum. The main results are the following: the decrease in outer sphere solvation upon N-alkylation is the major source of the relative stabilization of the lower oxidation state complexes by the tertiary amine ligands; tertiary amine nitrogen donors are stronger sigma-donors than the secondary amines, as predicted from the inductive effect of alkyls; steric strain elongates the metal-nitrogen bonds in the tertiary complexes and decreases the ligand strain energies; and the site of water binding to the complexes differs because of their different electronic structures (i.e., in the Ni complexes, the water molecules bind to the M[bond]N[bond]H sites, whereas in the Cr complexes they bind to the central metal cation). Outer sphere hydrogen bonding of water to the ligands in the coordination sphere lowers the ionization potentials by charge delocalization.  相似文献   
83.
84.
85.
86.
87.
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号