首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   8篇
  国内免费   2篇
化学   125篇
力学   1篇
数学   13篇
物理学   14篇
  2022年   8篇
  2021年   6篇
  2020年   6篇
  2019年   14篇
  2018年   18篇
  2017年   9篇
  2016年   11篇
  2015年   6篇
  2014年   14篇
  2013年   14篇
  2012年   17篇
  2011年   3篇
  2010年   9篇
  2009年   3篇
  2008年   4篇
  2006年   5篇
  2004年   4篇
  2003年   1篇
  2000年   1篇
排序方式: 共有153条查询结果,搜索用时 15 毫秒
111.
112.
Green synthesis of pure nickel oxide nanoparticles (nano-NiO) in aqueous medium has been carried out using gelatin. The particles have been characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). Gelatin plays an important role in the formation of the nano-NiO. TEM image shows the formation of nano-NiO with average particle size 16 nm, which agrees well with the XRD data. Moreover, efficient and stable nano-NiO-based anodes were fabricated by casting of the nano-NiO and multi-walled carbon nanotube solution (NiO-MWNT) on glassy carbon (NiO-MWNT/GC), platine (NiO-MWNT/Pt), and carbon paste (NiO-MWNT/CP) electrodes. The electrocatalysis of oxygen evolution reaction (OER) at modified electrodes has been examined using linear scanning voltammetry (LSV). The OER is significantly enhanced upon modification of the electrodes with NiO-MWNT, as demonstrated by a negative shift in the LSV curves at the NiO-MWNT-modified electrodes compared to that obtained at the unmodified ones. The maximum electrocatalytic activity toward the OER was obtained in alkaline media. The values of energy saving of oxygen gas at a current density of 5 mA cm?2 Pt, CP, and GC electrodes are 14.1, 16.0, and 21.6 kW h kg?1, respectively. The low cost as well as the marked stability of the modified electrodes makes them promising candidates in industrial water electrolysis process.  相似文献   
113.
A modified electrode was fabricated by grafting of poly (2,6‐pyridinedicarboxylic acid) film (PDC) by electropolymerization of 2,6‐pyridinedicarboxylic acid on the glassy carbon electrode (GCE). Then, gold nanoparticles (NG) and 1,2‐naphthoquinone‐4‐sulfonic acid sodium (Nq) were immobilized on the PDC/GCE to prepare Nq/NG/PDC/GCE by immersing electrode into NG and Nq solution, respectively. The Nq species on NG/PDC/GCE could catalyze electrooxidation of N‐acetyl‐L ‐cysteine (NAC) with lowering the over potential by about 600 mV. This method used for detection of NAC in dynamic range from 4.0×10?6 M to 1.30×10?4 M with a detection of limit (2σ) 8.0×10?7 M.  相似文献   
114.
As the most important components of a hemodialysis device, nanofibrous membranes enjoy high interconnected porosity and specific surface area as well as excellect permeability. In this study, a tubular nanofibrous membrane of polysulfone nanofibers was produced via electrospinning method to remove urea and creatinine from urine and blood serums of dialysis patients. Nanofibrous membranes were electrospun at a concentration of 11.5 wt% of polysulfone (PS) and dimethylformamide (DMF)/tetrahydrofuran (THF) with a ratio of 70/30. The effects of the rotational speed of collectors, electrospinning duration, and inner diameter of the tubular nanofibrous membrane on the urea and creatinine removal efficiency of the tubular membrane were investigated through the hemodialysis simulation experiments. It was found that the tubular membrane with an inner diameter of 3 mm elecrospun at shorter duration with lower collecting speed had the highest urea and creatinine removal efficiency. The hemodialysis simulation experiment showed that the urea and creatinine removal efficiency of the tubular membrane with a diameter of 3 mm were 90.4 and 100%, respectively. Also, three patients’ blood serums were tested with the nanofibrous membrane. The results showed that the creatinine and urea removal rates were 93.2 and 90.3%, respectively.  相似文献   
115.
We have applied density functional theory calculations to study polarizability of the Si60H60 derivatives with epoxide moieties (Si60H60?2nOn with n up to 30). The results show that mean polarizability, α, of oxygen-containing silicon fullerene derivatives is higher than that of Si60H60. The mean polarizabilities of the isomers slightly depend on the positional relationship of the epoxide moieties, and are determined mainly by the number of epoxide moieties. Mean polarizabilities of Si60H60?2nOn linearly increase with n, and are characterized by the depression of polarizability. The formula describing the mean polarizability as a function of the number of epoxide groups has been obtained, which may be important for the design of silicon-containing nanostructures with regulated polar parameters.  相似文献   
116.
A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method was applied to the enantioseparation of three binaphthyl derivatives using neutral CDs (i.e., beta- and gamma-CD) in combination with various chiral amino acid-based polymeric surfactants (PSs). Both the D- and L-configurations of poly(sodium N-undecanoyl alaninate), poly(sodium N-undecanoyl leucinate), and poly(sodium N-undecanoyl valinate) (poly(L-SUV)) were synthesized. The retention behavior of the three binaphthyl derivatives under optimum electrophoretic conditions using a single chiral additive (PS or CD) is discussed. In addition, the effect of CD cavity size and stereochemical configuration of polymeric surfactants on selectivity (alpha) and resolution (Rs) was investigated. The enantioseparation of (+/-)1,1'-binaphthyl-2,2'-diamine gave a reversal of enantiomeric order when using beta-CD in combination with any of the three D-configuration PS. However, better enantioseparation is obtained when using the corresponding L-configuration PS with beta-CD. A reversal of migration order (RMO) for the enantiomers of (+/-)1,1'-bi-2-naphthol was observed upon the addition of 10 mM gamma-CD to poly(L-SUV). However, no RMO of (+/-)1,1'-bi-2-naphthol was seen when either beta-CD or gamma-CD was combined with D-PS. The enantiomers of (+/-)1,1'-binaphthyl-2,2'-diyl hydrogen phosphate showed little enantioselective behavior toward the PS alone. However, combined D- or L-PS and beta-CD or gamma-CD systems gave increased Rs and alpha values. The chiral recognition of binaphthyl derivatives observed resulting from the various combinations of two chiral selectors is discussed.  相似文献   
117.
Rhodium-catalyzed hydroformylation of 1-octene in the presence of different phosphine and phosphine oxide ligands has been investigated. The molecular structure of new phosphine ligand, fluorenylidine methyl phenyl diphenylphosphine, was determined by single-crystal X-ray crystallography. Parameters such as different ligands, molar ratio of ligand to rhodium complex, ratio of olefin to rhodium complex, pressure of CO : H2 mixture, and time of the reaction were studied. The linear aldehyde was the main product when the phosphine ligands were used as auxiliary ligands while the selectivity was changed to the branched products when the related phosphine oxide ligands were used. Under optimized reaction conditions, in the presence of [Rh(acac)(CO)(Ph3P)]-di(1-naphthyl)phenyl phosphine oxide, conversion of 1-octene reached 97% with 87% selectivity of branched aldehyde.  相似文献   
118.
In the present study, titanium dioxide (TiO2) nano-particles were synthesized by sol–gel technique and then used to provide nano-TiO2 loaded cement samples at 1, 5, and 10 wt% for investigation of Malachite green pigment decomposition and Escherichia coli inactivation under UV irradiation. Surveys conducted on the synthesized TiO2 nano-particles showed a 100 % anatase phase with a mean particle size of 66.5 nm, surface area of 64.352 m2 g?1, and a porosity volume of 0.1278 cm3 g?1. Cement samples containing this catalyst exhibited stronger photocatalytic properties as compared to the same amount of pure catalyst. Considering both photocatalytic performance and cost of catalyst, 5 wt% titanium dioxide was suggested to be added to cement. By addition of 1 wt% polycarboxylic copolymer as super-plasticizer to the cement paste, the photocatalytic sample activities were reinforced so that a similar performance could be obtained at 1 wt% catalyst as compared to 5 wt% catalyst without super-plasticizer.  相似文献   
119.
New membrane‐based molecular separation processes are an essential part of the strategy for sustainable chemical production. A large literature on “hybrid” or “mixed‐matrix” membranes exists, in which nanoparticles of a higher‐performance porous material are dispersed in a polymeric matrix to boost performance. We demonstrate that the hybrid membrane concept can be redefined to achieve much higher performance if the membrane matrix and the dispersed phase are both nanoporous crystalline materials, with no polymeric phase. As the first example of such a system, we find that surface‐treated nanoparticles of the zeolite MFI can be incorporated in situ during growth of a polycrystalline membrane of the MOF ZIF‐8. The resulting all‐nanoporous hybrid membrane shows propylene/propane separation characteristics that exceed known upper‐bound performance limits defined for polymers, nanoporous materials, and polymer‐based hybrid membranes. This serves as a starting point for a new generation of chemical separation membranes containing interconnected nanoporous crystalline phases.  相似文献   
120.
Bacteria‐caused infection remains an issue in the treatment of bone defects by means of Mg‐Zn‐Ca alloy implants. This study aimed to improve the antibacterial properties of an Mg‐Zn‐Ca alloy by coating with chitosan‐based nanofibers with incorporated silver sulfadiazine (AgSD) and multiwall carbon nanotubes (MWCNTs). AgSD and MWCNTs were prepared at a weight ratio of 1:1 and then added to chitosan at varying concentrations (ie, 0, 0.25, 0.5, and 1.5 wt.%) to form composites. The obtained composites were ejected in nanofiber form using an electrospinning technique and coated on the surface of an Mg‐Zn‐Ca alloy to improve its antibacterial properties. A microstructural examination by scanning electron microscopy (SEM) revealed the diameter of chitosan nanofiber ejected increased with the concentration of AgSD‐MWCNTs. The incorporation of AgSD‐MWCNTs into the chitosan nanofibers was confirmed by Fourier transform infrared spectroscopy (FTIR). Examination of the antibacterial activity shows that chitosan nanofibers with AgSD‐MWCNTs can significantly inhibit the growth and infiltration of Escherichia coli and Staphylococcus aureus. Biocompatibility assay and cell morphology observations demonstrate that AgSD‐MWCNTs incorporated into nanofibers are cytocompatible. Taken together, the results of this study demonstrate the potential application of electrospun chitosan with AgSD‐MWCNTs as an antibacterial coating on Mg‐Zn‐Ca alloy implants for bone treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号