首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6422篇
  免费   1284篇
  国内免费   991篇
化学   4636篇
晶体学   185篇
力学   385篇
综合类   99篇
数学   700篇
物理学   2692篇
  2024年   17篇
  2023年   117篇
  2022年   272篇
  2021年   279篇
  2020年   320篇
  2019年   348篇
  2018年   295篇
  2017年   322篇
  2016年   391篇
  2015年   423篇
  2014年   471篇
  2013年   618篇
  2012年   698篇
  2011年   639篇
  2010年   496篇
  2009年   489篇
  2008年   474篇
  2007年   383篇
  2006年   305篇
  2005年   275篇
  2004年   216篇
  2003年   156篇
  2002年   137篇
  2001年   107篇
  2000年   68篇
  1999年   82篇
  1998年   38篇
  1997年   47篇
  1996年   49篇
  1995年   47篇
  1994年   20篇
  1993年   23篇
  1992年   12篇
  1991年   14篇
  1990年   11篇
  1989年   9篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   7篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1980年   4篇
  1936年   2篇
排序方式: 共有8697条查询结果,搜索用时 15 毫秒
151.
152.
Carbon nanotubes (CNTs) are excellent scaffolds for advanced electrode materials, resulting from their intrinsic sp2 carbon hybridization, interconnected electron pathway, large aspect ratio, hierarchical porous structures, and low cost at a large-scale production. How to make full utilization of the mass produced CNTs as building blocks for nanocomposite electrodes is not well understood yet. Herein, a composite cathode containing commercial agglomerated multi-walled CNTs and S for Li-S battery was fabricated by a facile melt-diffusion strategy. The hierarchical CNT@S coaxial nanocables exhibited a discharging capacity of 1020 and 740 mAh g-1 at 0.5 and 2.0 C, respectively. A rapid capacity decay of 0.7% per cycle at the initial 10 cycles and a slow decay rate of 0.14% per cycle for the later 140 cycles were detected. Such hierarchical agglomerated CNT@S cathodes show advantages in easy fabrication, environmentally benign, low cost, excellent scalability, and good Li ion storage performance, which are extraordinary composites for high performance Li-S battery.  相似文献   
153.
A sensitive liquid chromatography–electrospray ionization–mass spectrometry method has been developed and validated for determination of two major bioactive saponins in rat plasma after oral administration of saponins extracted from Rhizoma Panacis Japonici, including chikusetsusaponin V and chikusetsusaponin IV for the first time. Akebia saponin D was used as the internal standard (IS). Plasma samples were prepared by protein precipitation with methanol. A Phenomenex C18 column (150 × 4.6 mm, 4 µm) was used as the analytical column with a mobile phase of acetonitrile and 0.05% aqueous formic acid. Mass spectrometric detection was achieved by single quadrupole mass spectrometer equipped with an electrospray ionization interface operating in negative ionization mode. Calibration curves showed good linearity over the concentration range of 5–500 ng/mL for the two analytes in rat plasma. The lower limit of quantification was 5 ng/mL. The intra‐ and inter‐batch precisions were within 10.3% and accuracy ranged from ?3.9 to 5.4%. The method was validated and successfully applied to the preliminary pharmacokinetic study of chikusetsusaponin V and chikusetsusaponin IV in rat plasma after oral administration of saponins extracted from Rhizoma Panacis Japonici. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
154.
A simple and sensitive analytical method based on ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) has been developed for determination of moclobemide in human brain cell monolayer as an in vitro model of blood–brain barrier. Brucine was employed as the internal standard. Moclobemide and internal standard were extracted from cell supernatant by ethyl acetate after alkalinizing with sodium hydroxide. The UPLC separation was performed on an Acquity UPLCTM BEH C18 column (50 × 2.1 mm, 1.7 µm, Waters, USA) with a mobile phase consisting of methanol–water (29.5:70.5, v/v); the water in the mobile phase contained 0.05% ammonium acetate and 0.1% formic acid. Detection of the analytes was achieved using positive ion electrospray via multiple reaction monitoring mode. The mass transitions were m/z 269.16 → 182.01 for moclobemide and m/z 395.24 → 324.15 for brucine. The extraction recovery was 83.0–83.4% and the lower limit of quantitation (LLOQ) was 1.0 ng/mL for moclobemide. The method was validated from LLOQ to 1980 ng/mL with a coefficient of determination greater than 0.999. Intra‐ and inter‐day accuracies of the method at three concentrations ranged from 89.1 to 100.9% for moclobemide with precision of 1.1–9.6%. This validated method was successfully applied to bidirectional transport study of moclobemide blood–brain barrier permeability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
155.
To improve the initial coulombic efficiency and bulk density of ordered mesoporous carbons, active Fe2O3 nanoparticles were introduced into tubular mesopore channels of CMK-5 carbon, which possesses high specific surface area (>1700 m 2 g-1 ) and large pore volume (>1.8 cm 3 g-1 ). Fine Fe2O3 nanoparticles with sizes in the range of 5 7 nm were highly and homogenously encapsulated into CMK-5 matrix through ammonia-treatment and subsequent pyrolysis method. The Fe2O3 loading was carefully tailored and designed to warrant a high Fe2O3 content and adequate buffer space for improving the electrochemical performance. In particular, such Fe2O3 and mesoporous carbon composite with 47 wt% loading exhibits a considerably stable cycle performance (683 mAh g-1 after 100 cycles, 99% capacity retention against that of the second cycle) as well as good rate capability. The fabrication strategy can effectively solve the drawback of single material, and achieve a high-performance lithium electrode material.  相似文献   
156.
We classify moduli spaces of arrangements of 10 lines with quadruple points. We show that moduli spaces of arrangements of 10 lines with quadruple points may consist of more than 2 disconnected components, namely 3 or 4 distinct points. We also present defining equations to those arrangements whose moduli spaces are still reducible after taking quotients of complex conjugations.  相似文献   
157.
Here, we report the synthesis and characterization of a novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its composites with nano-hydroxyapatite (nHA) as potential weight-bearing composite. The 4PLAUMA/nHA ratios of the composites were 1:3, 2:5, 1:2 and 1:1. FTIR and NMR characterization showed urethane and maleate units integrated into the PLA matrix. Energy dispersion and Auger electron spectroscopy confirmed homogeneous distribution of nHA in the polymer matrix. Maximum moduli and strength of the composites of 4PLAUMA/nHA, respectively, are 1973.31 ± 298.53 MPa and 78.10 ± 3.82 MPa for compression, 3630.46 ± 528.32 MPa and 6.23 ± 1.44 MPa for tension, 1810.42 ± 86.10 MPa and 13.00 ± 0.72 for bending, and 282.46 ± 24.91 MPa and 5.20 ± 0.85 MPa for torsion. The maximum tensile strains of the polymer and composites are in the range of 5–93%, and their maximum torsional strains vary from 0.26 to 0.90. The composites exhibited very slow degradation rates in aqueous solution, from approximately 50% mass remaining for the pure polymer to 75% mass remaining for composites with high nHA contents, after a period of 8 weeks. Increase in ceramic content increased mechanical properties, but decreased maximum strain, degradation rate, and swelling of the composites. Human bone marrow stem cells and human endothelial cells adhered and proliferated on 4PLAUMA films and degradation products of the composites showed little-to-no toxicity. These results demonstrate that novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its nHA composites may have potential applications in regenerative medicine.  相似文献   
158.
Kong  Ji-Zhou  Ren  Chong  Jiang  You-Xuan  Zhou  Fei  Yu  Chao  Tang  Wei-Ping  Li  Hui  Ye  Sheng-Yi  Li  Jun-Xiu 《Journal of Solid State Electrochemistry》2016,20(5):1435-1443
Journal of Solid State Electrochemistry - Li2TiO3 is used as a novel coating material to modify Li(Li0.2Mn0.51Ni0.19Co0.1)O2 electrode to enhance the electrochemical performance of the host...  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号