首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   976篇
  免费   25篇
  国内免费   6篇
化学   512篇
晶体学   2篇
力学   67篇
数学   223篇
物理学   203篇
  2023年   8篇
  2022年   21篇
  2021年   17篇
  2020年   19篇
  2019年   23篇
  2018年   20篇
  2017年   20篇
  2016年   53篇
  2015年   25篇
  2014年   32篇
  2013年   51篇
  2012年   70篇
  2011年   88篇
  2010年   49篇
  2009年   43篇
  2008年   59篇
  2007年   69篇
  2006年   41篇
  2005年   42篇
  2004年   40篇
  2003年   42篇
  2002年   24篇
  2001年   11篇
  2000年   10篇
  1999年   8篇
  1998年   4篇
  1997年   8篇
  1996年   10篇
  1995年   12篇
  1994年   11篇
  1993年   8篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   8篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   1篇
  1974年   3篇
  1973年   1篇
排序方式: 共有1007条查询结果,搜索用时 530 毫秒
951.
In this paper we report an innovative use of Poly(DiMethyl)Siloxane (PDMS) to design a microfluidic device that combines, for the first time, in one single reaction chamber, DNA purification from a complex biological sample (blood) without elution and PCR without surface passivation agents. This result is achieved by exploiting the spontaneous chemical structure and nanomorphology of the material after casting. The observed surface organization leads to spontaneous DNA adsorption. This property allows on-chip complete protocols of purification of complex biological samples to be performed directly, starting from cells lysis. Amplification by PCR is performed directly on the adsorbed DNA, avoiding the elution process that is normally required by DNA purification protocols. The use of one single microfluidic volume for both DNA purification and amplification dramatically simplifies the structure of microfluidic devices for DNA preparation. X-Ray Photoelectron Spectroscopy (XPS) was used to analyze the surface chemical composition. Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM) were employed to assess the morphological nanostructure of the PDMS-chips. A confocal fluorescence analysis was utilized to check DNA distribution inside the chip.  相似文献   
952.
The new notion of slice monogenic functions introduced in the paper [F. Colombo, I. Sabadini, D.C. Struppa, Slice monogenic functions, Israel J. Math. 171 (2009) 385-403] led us to define a new functional calculus for an n-tuple of not necessarily commuting operators, see [F. Colombo, I. Sabadini, D.C. Struppa, A new functional calculus for noncommuting operators, J. Funct. Anal. 254 (2008) 2255-2274]. In this paper we prove a Cauchy formula with slice monogenic kernel for the slice monogenic functions. This new Cauchy formula is the fundamental tool to prove that our functional calculus apply to a more general setting. Moreover, we deduce some fundamental properties of the functional calculus, for example: some algebraic properties, the Spectral Mapping Theorem and the Spectral Radius Theorem.  相似文献   
953.
We use the crystalline nature of the universal extension of a 1-motive M to define a canonical Gauss-Manin connection on the de Rham realization of M. As an application we provide a construction of the so-called Manin map from a motivic point of view.  相似文献   
954.
In this paper, by an extension of the Ginzburg–Landau theory, we propose a mathematical model describing hard magnets within which we are able to explore the para–ferromagnetic transition and by using the Landau–Lifshitz–Gilbert equation, to study the 3D evolution of magnetic field. Finally, the hysteresis loops are obtained and represented by numerical implementations.  相似文献   
955.
We consider a family of copulas that are invariant under univariate truncation. Such a family has some distinguishing properties: it is generated by means of a univariate function; it can capture non-exchangeable dependence structures; it can be easily simulated. Moreover, such a class presents strong probabilistic similarities with the class of Archimedean copulas from a theoretical and practical point of view.  相似文献   
956.
The two-dimensional self-assembly of a terbium(III) double-decker phthalocyanine on highly oriented pyrolitic graphite (HOPG) was studied by atomic force microscopy (AFM), and it was shown that it forms highly regular rectangular two-dimensional nanocrystals on the surface, that are aligned with the graphite symmetry axes, in which the molecules are organized in a rectangular lattice as shown by scanning tunneling microscopy. Molecular dynamics simulations were run in order to model the behavior of a collection of the double-decker complexes on HOPG. The results were in excellent agreement with the experiment, showing that-after diffusion on the graphite surface-the molecules self-assemble into nanoscopic islands which align preferentially along the three main graphite axes. These low dimension assemblies of independent magnetic centers are only one molecule thick (as shown by AFM) and are therefore very interesting nanoscopic magnetic objects, in which all of the molecules are in interaction with the graphite substrate and might therefore be affected by it. The magnetic properties of these self-assembled bar-shaped islands on HOPG were studied by X-ray magnetic circular dichroism, confirming that the compounds maintain their properties as single-molecule magnets when they are in close interaction with the graphite surface.  相似文献   
957.
Supramolecular strategies, based on hydrogen bonds and ionic interactions, were investigated as tools for the recovery and recycling of homogeneous transition-metal catalysts by using reverse-flow adsorption (RFA) technology. The association (in solution) and adsorption (on support) of new functionalized host materials and phosphine guest ligands, functionalized with the complementary binding motifs, were fine-tuned for the application of these materials in a RFA reactor. The RFA technology for process-integrated recycling of homogeneous catalysts using these tailor-made phosphine ligands and silica-supported host materials resulted in a stable, semicontinuous catalytic system. Rhodium-catalyzed asymmetric hydrogenation of methyl acetamidoacrylate and asymmetric hydrosilylation of acetophenone were studied as test reactions. Depending on the catalytic process the metal complex could be recycled several times without significant loss in conversion.  相似文献   
958.
Cationic liposomes are studied mainly as nonviral nucleic acid delivery systems and to a lesser extent as carriers/adjuvants of vaccines and as low-molecular-weight drug carriers. It is well established that the performance and the biological activity of liposomes in general are strongly related to their physicochemical properties. We investigated the thermotropic behavior and the size distribution of mixed cationic liposomes formulated with different percentages of 1,2 dimyristoyl-sn-glycero-3-phosphatidylcholine and one of four cationic amphiphiles characterized by a pyrrolidinium headgroup with the aim of achieving a better understanding of how the molecular structure of the cationic amphiphile and its mole percentage affect the physicochemical properties of the liposomes. Multilamellar vesicles and large unilamellar vesicles were studied by differential scanning calorimetry and turbidity, respectively, to characterize the thermotropic behavior and lipid phase, whereas dynamic light scattering was used to determine size distribution. This study shows that subtle modifications in the cationic amphiphile's molecular structure and in liposome composition may have dramatic effects on the organization of the liposome bilayer and hence on the morphological and physicochemical features of the liposomes, thus being highly relevant to the biological features investigated previously.  相似文献   
959.
The presence and stability of sp hybridized atoms in free carbon nanoparticles was investigated by NEXAFS spectroscopy. The experiments show that a predominant fraction of carbon atoms is found in linear sp-chains and that conversion into sp(2) structures proceeds already at low temperature and in the gas phase.  相似文献   
960.
Antiviral properties of lactoferrin--a natural immunity molecule   总被引:1,自引:0,他引:1  
Lactoferrin, a multifunctional iron binding glycoprotein, plays an important role in immune regulation and defence mechanisms against bacteria, fungi and viruses. Lactoferrin's iron withholding ability is related to inhibition of microbial growth as well as to modulation of motility, aggregation and biofilm formation of pathogenic bacteria. Independently of iron binding capability, lactoferrin interacts with microbial, viral and cell surfaces thus inhibiting microbial and viral adhesion and entry into host cells. Lactoferrin can be considered not only a primary defense factor against mucosal infections, but also a polyvalent regulator which interacts in viral infectious processes. Its antiviral activity, demonstrated against both enveloped and naked viruses, lies in the early phase of infection, thus preventing entry of virus in the host cell. This activity is exerted by binding to heparan sulphate glycosaminoglycan cell receptors, or viral particles or both. Despite the antiviral effect of lactoferrin, widely demonstrated in vitro studies, few clinical trials have been carried out and the related mechanism of action is still under debate. The nuclear localization of lactoferrin in different epithelial human cells suggests that lactoferrin exerts its antiviral effect not only in the early phase of surface interaction virus-cell, but also intracellularly. The capability of lactoferrin to exert a potent antiviral activity, through its binding to host cells and/or viral particles, and its nuclear localization strengthens the idea that lactoferrin is an important brick in the mucosal wall, effective against viral attacks and it could be usefully applied as novel strategy for treatment of viral infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号