首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   5篇
  国内免费   5篇
化学   99篇
晶体学   1篇
数学   62篇
物理学   40篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   9篇
  2012年   7篇
  2011年   7篇
  2010年   13篇
  2009年   11篇
  2008年   12篇
  2007年   18篇
  2006年   10篇
  2005年   20篇
  2004年   7篇
  2003年   13篇
  2002年   6篇
  2001年   5篇
  2000年   5篇
  1999年   7篇
  1998年   9篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1985年   2篇
  1984年   2篇
  1981年   1篇
  1979年   2篇
  1977年   1篇
排序方式: 共有202条查询结果,搜索用时 31 毫秒
81.
A series of new neutral allyl Group 3 metal complexes bearing ansa-bridged fluorenyl/cyclopentadienyl ligands [[Flu-EMe(2)-(3-R-Cp)]Ln(eta(3)-C(3)H(5))(THF)] (E=C, R=H, Ln=Y (2), La (3), Nd (4), Sm (5); R=tBu, Ln=Y (8), Nd (9); E=Si, R=H, Ln=Y (12), Nd (13)) were synthesized in good yields via salt metathesis protocols. The complexes were characterized by elemental analysis, NMR spectroscopy for diamagnetic complexes, and single-crystal X-ray diffraction studies for 2, 4, 9 and 12. Some of the allyl ansa-lanthanidocenes, especially 4, are effective single-component catalysts for the polymerization of styrene, giving pure syndiotactic polystyrenes (rrrr > 99 %) with low to high molecular weights (M(n)=6000-135,000 g mol(-1)) and narrow polydispersities (M(w)/M(n)=1.2-2.6). The catalyst systems are remarkably stable, capable of polymerizing styrene up to 120 degrees C with high activities, while maintaining high syndiotacticity via chain-end control as established by a Bernoullian analysis. Highly effective copolymerization of styrene with ethylene was achieved using neodymium complex 4 (activity up to 2530 kg PS-PE mol(-1) h(-1)) to give true copolymers void of homopolymers with M(n)=9000-152,000 g mol(-1) and narrow polydispersities (M(w)/M(n)=1.2-2.5). The nature of the resultant P(S-co-E) copolymers was ascertained by NMR, size-exclusion chromatography/refractive index/UV, temperature rising elusion fractionation, and differential scanning calorimetry. It is shown that, regardless the amount of ethylene incorporated (1-50 mol %), P(S-co-E) copolymers have a microstructure predominantly made of long highly syndiotactic PS sequences separated by single or few ethylene units. Co-monomers feed and polymerization temperature can be used straightforwardly to manipulate with the physical and mechanical characteristics of the P(S-co-E) copolymers (molecular weights and distributions, co-monomer content, microstructure, T(m), T(g), T(c)).  相似文献   
82.
The possibility of detecting J/Ψ → e + e ? decays produced in the Compressed Baryonic Matter (CBM) experiments in Au-Au collisions at a beam energy of 25 GeV/nucleon is studied. Special selection criteria are formulated and the optimal target thickness is identified in order to facilitate the selection of signal events in the presence of a dominant background. An efficient method for determining the rejection boundaries for the mentioned selection criteria is proposed. It is shown that the criteria used make it possible to accumulate sufficient J/Ψ → e + e ? decay statistics in a fast and reliable way.  相似文献   
83.
Initially isolated from Pd(10)(CO)(12)(PEt(3))(6) (5) and Au(SMe(2))Cl precursors in a two-step carbon monoxide (CO)-involved procedure, the nanosized interpenetrating bicuboctahedral gold (Au)-palladium (Pd) Au(2)Pd(28)(CO)(26)(PEt(3))(10) (1) was then directly obtained in 25-30% yield from the CO-induced reaction of the CO-stable Au-centered cuboctahedral Au(2)Pd(21)(CO)(20)(PEt(3))(10) (3) with the structurally analogous CO-unstable Pd(23)(CO)(20)(PEt(3))(10) (4). Our hypothesis that this latter synthesis is initiated by the reaction of 3 with coordinatively unsaturated homopalladium species resulting from CO-induced fragmentation of 4 was subsequently substantiated by the alternatively designed synthesis of 1 (~25% yield) from the CO-induced reaction of 3 with the structurally dissimilar CO-unstable Pd(38)(CO)(28)(PEt(3))(12) (6). The composition of 1, unambiguously established from a 100 K CCD X-ray diffractometry study, is in accordance with single-crystal X-ray Au-Pd field-emission microanalysis. The pseudo-C(2h) 30-atom Au(2)Pd(28) geometry of 1 may be formally derived via substitution of the interior (μ(12)-Pd)(2) moiety in the interpenetrating bicuboctahedral Pd(20) kernel of the known isostructural Pd(30)(CO)(26)(PEt(3))(10) (2) with the corresponding interior (μ(12)-Au)(2) moiety, in which the otherwise entire metal-core geometry and CO/PR(3)-ligated environment are essentially not altered. Of major significance is that this interior nonisovalent Pd-by-Au replacement in 2 produces CO-stable 1, whereas nanosized CO/PR(3)-ligated homopalladium Pd(n) clusters with n > 10 are generally unstable under CO. Because the two adjacent encapsulated Au atoms of 2.811(1) ? separation are not present on the metal surface, isolation of 1 under CO is ascribed to an electronic property. The virtually ideal geometrical site-occupancy fit between 1 and 2 provides definite crystallographic evidence for extensive delocalization in 1 of the two valence Au 6s electrons over the entire cluster (instead of a "localized" covalent Au-Au electron-pair interaction). Gradient-corrected (pseudo-scalar-relativistic) density functional theory (DFT) calculations were performed on the isostructural Au(2)Pd(28)(CO)(26)(PH(3))(10) (1-H) and Pd(30)(CO)(26)(PH(3))(10) (2-H) model clusters along with hypothetical [Au(2)Pd(28)(1-H)](2+) and [Pd(30)(2-H)](2-) analogues (with phosphine ethyl substituents replaced by hydrogen ones). Natural population analysis of these four model clusters revealed similar highly positively charged metal surfaces of 28 Pd atoms relative to the two negatively charged interior metal atoms, which reflect a partially oxidized metal surface due to dominant CO back-bonding. The surprising observation that each less electronegative interior Pd atom in 2-H is more negatively charged by 0.30e than each interior Au atom in 1-H points to a more cationic Au in 1 than interior Pd in 2; this unexpected (opposite) charge difference is consistent with delocalization of each Au 6s valence electron toward a Au(+) configuration. This premise is in agreement with the calculated Wiberg bond index (WBI) value of 0.055 for the Au-Au bond order in 1-H versus the WBI single-bond value of 1.01 obtained from analogous DFT calculations for the bare, neutral Au(2) dimer, which has a much shorter spectroscopically determined gas-phase distance of 2.472 ? (that corresponds to a "localized" electron-pair interaction). Isolation of 1 under CO is of prime importance in nanoscience/nanotechnology in establishing relative stabilizations toward CO in well-defined CO/PEt(3)-ligated nonisovalent Pd(2)-by-Au(2)-substituted Au(2)Pd(n-2) clusters [namely, n = 30 (1) and 23 (3)]. These important stereochemical implications have a direct relevance to the recent report of the higher tolerance to CO poisoning of highly active Au-Pd nanoparticle catalysts used for the complete conversion of formic acid into high-purity hydrogen (and CO(2)) for chemical hydrogen storage.  相似文献   
84.
Different regimes of laser operation and stimulated Raman scattering (SRS) for a laser diode (LD)-pumped PbMoO4:Nd3+ crystal have been investigated. Under 1.5 W LD pumping, the output power of the PbMoO4:Nd3+ laser in the free-running mode at 1056 nm reached 0.65 W with a slope efficiency of up to 53%. Using different LiF: F-2 saturable absorbers, we achieved a maximum pulse energy of 11 microJ at a 1.4 ns pulse duration and a maximum output power of 0.35 W (10 microJ) at a 7 ns pulse width in the passively Q-switched mode. PbMoO4:Nd3+ self-Raman-laser operation at 1163 nm (first Stokes) was obtained for the first time, to our knowledge. The self-Raman-laser output pulse energy was measured to be as high as 6 microJ and the pulse duration was estimated to be shorter than 500 ps.  相似文献   
85.
A wideband near-IR (NIR) luminescence centered at 1080 nm was found in a RbPb(2)Cl(5):Bi single crystal grown by the Bridgman technique. Absorption, luminescence, and excitation of luminescence spectra were investigated at room and cryogenic temperatures. The luminescence was proposed to be due to the (3)P(1)-->(3)P(0) transition in Bi(+) ion.  相似文献   
86.
87.
An effective way to synthesize liquid crystalline ionomers by an exchange reaction between the acid groups of functionalized LC polymers and a metal acetate was examined. A number of LC ionomers containing ions of the alkaline metals Na and Rb (1.2–18.3 mol‐%) were obtained. The introduction of small amounts (1.2–5 mol‐%) of metal ions into a functionalized LC polymer matrix leads to significant changes in the phase state of copolymers – the nematic phase is replaced by a SmA phase; an increase of the content of alkaline metal ions causes linear growth of clearing temperatures. The influence of the nature of the metal ions on the phase behavior of LC ionomers was determined. To describe the peculiarities of the LC ionomers' phase behavior a model based on the assumption that an ion multiplet is formed was proposed. Here, the rigidity of the functionalized LC copolymer chains used as a matrix for the preparation of LC ionomers was taken into consideration.  相似文献   
88.
Electronic and infrared absorption spectra of mass-selected C6+, generated by dissociative electron impact ionization of C6Cl6 and C6Br6, have been recorded in 6 K neon matrices. Linear and cyclic forms of C6+ have been observed. The 2Pig<--Chi2Piu electronic transition of linear C6+ has its origin band at 646 nm whereas for the (2) 2B2<--Chi2A1 system of the cyclic isomer it lies at 570 nm. An infrared active fundamental mode in the ground electronic state of C6+ is observed at 2092 and 1972 cm(-1) for the linear and cyclic isomer, respectively.  相似文献   
89.
The difference in degradation behavior of titania-doped tin dioxide films is explained by a pronounced effect of the doping level on the film dispersity and fine distribution of titania. A two to three times decrease in nanoparticles sizes in the doped films compared with nanoparticles in SnO2 film (20–30 nm) is revealed by using scanning tunneling microscopy (STM). Such STM data (measured in ex situ configuration) combined with XRD and Mössbauer spectroscopy analysis confirm that the nanoparticles are composed of nanostructured heavily disordered SnO2 and TiO2 rutile solid solution or of amorphous phase containing both SnO2 and TiO2, the content of the crystalline and amorphous phases being approximately equal.
S. Yu. VassilievEmail:
  相似文献   
90.
Magnetic resonance at the Fg = 1 \( \rightleftarrows \)Fe = 1 transition of the D1 line in 87Rb has been studied with pumping and detection by linearly polarized radiation and detection at the double frequency of the radiofrequency field. The intervals of allowed values of the static and alternating magnetic fields in which magnetic resonance has a single maximum have been found. The structure appearing beyond these intervals has been explained. It has been shown that the quadratic Zeeman shift is responsible for the three-peak structure of resonance; the radiofrequency shift results in the appearance of additional extrema in resonance, which can be used to determine the relaxation constant Γ2. The possibility of application in magnetometry has been discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号