首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2354篇
  免费   95篇
  国内免费   12篇
化学   2019篇
晶体学   10篇
力学   16篇
数学   242篇
物理学   174篇
  2023年   16篇
  2022年   43篇
  2021年   61篇
  2020年   62篇
  2019年   55篇
  2018年   29篇
  2017年   43篇
  2016年   89篇
  2015年   75篇
  2014年   84篇
  2013年   125篇
  2012年   161篇
  2011年   178篇
  2010年   100篇
  2009年   101篇
  2008年   143篇
  2007年   136篇
  2006年   149篇
  2005年   120篇
  2004年   103篇
  2003年   95篇
  2002年   84篇
  2001年   31篇
  2000年   20篇
  1999年   21篇
  1998年   18篇
  1997年   12篇
  1996年   23篇
  1995年   21篇
  1994年   13篇
  1993年   9篇
  1992年   11篇
  1991年   13篇
  1990年   9篇
  1989年   8篇
  1988年   8篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   13篇
  1982年   7篇
  1981年   7篇
  1980年   7篇
  1979年   9篇
  1978年   3篇
  1976年   5篇
  1973年   3篇
  1958年   55篇
  1957年   20篇
  1934年   4篇
排序方式: 共有2461条查询结果,搜索用时 15 毫秒
121.
In order to assess the long-term safety of deep radioactive waste repositories, a precise characterization of the different sorption processes on a molecular basis and the exact definition of geochemical boundary conditions for their relevance are of immense importance. Through sorption on various minerals the migration of radionuclides will be hindered and their retention will be ensured. Using time-resolved laser fluorescence spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS) spectroscopy, it was possible to identify outer-sphere sorbed trivalent lanthanides and actinides onto different montmorillonites and illite. Furthermore, the quantification of Cm(III)/clay outer-sphere sorption in D(2)O at different ionic strengths was shown. The results were confirmed by ion exchange model calculations. Finally, the structural parameters of a Sm(III)/clay outer-sphere complex were obtained by EXAFS measurements.  相似文献   
122.
A quartz crystal microbalance (QCM) and dual polarization interferometry (DPI) have been utilized to study how the structure of poly(allylamine hydrochloride) (PAH)/poly(styrene sulfonate) (PSS) multilayers is affected by the rinsing method (i.e., the termination of polyelectrolyte adsorption). The effect of the type of counterions used in the deposition solution was also investigated, and the polyelectrolyte multilayers were formed in a 0.5 M electrolyte solution (NaCl and KBr). From the measurements, it was observed that thicker layers were obtained when using KBr in the deposition solution than when using NaCl. Three different rinsing protocols have been studied: (i) the same electrolyte solution as used during multilayer formation, (ii) pure water, and (iii) first a salt solution (0.5 M) and then pure water. When the multilayer with PAH as the outermost layer was exposed to pure water, an interesting phenomenon was discovered: a large change in the energy dissipation was measured with the QCM. This could be attributed to the swelling of the layer, and from both QCM and DPI it is obvious that only the outermost PAH layer swells (to a thickness of 25-30 nm) because of a decrease in ionic strength and hence an increase in intra- and interchain repulsion, whereas the underlying layers retain a very rigid and compact structure with a low water content. Interestingly, the outermost PAH layer seems to obtain very similar thicknesses in water independent of the electrolyte used for the multilayer buildup. Another interesting aspect was that the measured thickness with the DPI evaluated by a single-layer model did not correlate with the estimated thickness from the model calculations performed on the QCM-D data. Thus, we applied a two-layer model to evaluate the DPI data and the results were in excellent agreement with the QCM-D results. To our knowledge, this evaluation of DPI data has not been done previously.  相似文献   
123.
Thermal behavior of highly crystalline ε-Fe2O3 nanoparticles of different apparent crystallite sizes was characterized using thermogravimetry, differential thermal analysis, and analysis of evolved gas by mass spectrometry. Phase composition of the samples was monitored ex situ by X-ray powder diffraction. The results show that the thermal stability of this metastable iron oxide polymorph decreases with increasing particle size. For the particle diameter of 19(2) nm, the transformation temperature was equal to 794(5) °C, while for 28(2) nm only 755(10) °C. Surface of the nanoparticles contained adsorbed water and carbon dioxide. Elimination of these species proceeds in two steps. Water is removed at temperatures below 200 °C and CO2 in the temperature range between 200 and 450 °C.  相似文献   
124.
The conversion of simple, easily available urea‐substituted 3‐phenylpropargyl alcohols catalyzed by a simple IPr–gold(I) catalyst in a gold(I)‐catalyzed cascade reaction composing of a gold‐catalyzed nucleophilic addition and a subsequent gold‐catalyzed substitution reaction delivers 1H‐imidazo[1, 5?a]indol‐3(2 H)‐ones. Other gold(I) catalysts or silver catalysts gave lower yields and often gave other side products. Gold(III) and copper(II) catalysts decomposed the starting material. Twelve examples, including donor and acceptor substituents on the distal nitrogen of the urea substructure, are provided. An X‐ray crystal structure analysis confirmed the structural assignment. The mechanistic investigation including isolation and further conversion of intermediates and reactions with enantiopure starting materials indicated that after the nucleophilic‐addition step, the substrate undergoes an SN1‐type benzylic substitution reaction at the indolyl alcohol intermediate or an intramolecular hydroamination reaction of the 2‐vinylindole intermediate.  相似文献   
125.
The iridium half‐sandwich complex [Ir(η51‐C5Me4CH2py)(2‐phenylpyridine)]PF6 is highly cytotoxic: 15–250× more potent than clinically used cisplatin in several cancer cell lines. We have developed a correlative 3D cryo X‐ray imaging approach to specifically localize and quantify iridium within the whole hydrated cell at nanometer resolution. By means of cryo soft X‐ray tomography (cryo‐SXT), which provides the cellular ultrastructure at 50 nm resolution, and cryo hard X‐ray fluorescence tomography (cryo‐XRF), which provides the elemental sensitivity with a 70 nm step size, we have located the iridium anticancer agent exclusively in the mitochondria. Our methodology provides unique information on the intracellular fate of the metallodrug, without chemical fixation, labeling, or mechanical manipulation of the cells. This cryo‐3D correlative imaging method can be applied to a number of biochemical processes for specific elemental localization within the native cellular landscape.  相似文献   
126.
In recent years, various functionalization strategies for transition‐metal dichalcogenides have been explored to tailor the properties of materials and to provide anchor points for the fabrication of hybrid structures. Herein, new insights into the role of the surfactant in functionalization reactions are described. Using the spontaneous reaction of WS2 with chloroauric acid as a model reaction, the regioselective formation of gold nanoparticles on WS2 is shown to be heavily dependent on the surfactant employed. A simple model is developed to explain the role of the chosen surfactant in this heterogeneous functionalization reaction. The surfactant coverage is identified as the crucial element that governs the dominant reaction pathway and therefore can severely alter the reaction outcome. This study shows the general importance of the surfactant choice and how detrimental or beneficial a certain surfactant can be to the desired functionalization.  相似文献   
127.

We compare three different methods to quantify the monosaccharide fucose in solutions using the displacement of a large glycoprotein, lactoferrin. Two microfluidic analysis methods, namely fluorescence detection of (labeled) lactoferrin as it is displaced by unlabeled fucose and the displacement of (unlabeled) lactoferrin in SPR, provide fast responses and continuous data during the experiment, theoretically providing significant information regarding the interaction kinetics between the saccharide groups and binding sites. For comparison, we also performed a static displacement ELISA. The stationary binding site in all cases was immobilized S2-AAL, a monovalent polypeptide based on Aleuria aurantia lectin. Although all three assays showed a similar dynamic range, the microfluidic assays with fluorescent or SPR detection show an advantage in short analysis times. Furthermore, the microfluidic displacement assays provide a possibility to develop a one-step analytical platform.

  相似文献   
128.
Phenol-paraphenylenediamine (P-pPDA) benzoxazines exhibit excellent barrier properties, adequate to protect aluminum alloys from corrosion, and constitute interesting candidates to replace chromate-containing coatings in the aeronautical industry. For the successful application of P-pPDA coatings, it is necessary to decrease the curing temperature to avoid the delamination of the coating while preserving the mechanical properties of the alloy, as well as the barrier properties of the coating. However, decreasing the curing temperature leads to less polymerized films, the extent of which requires a quantitative assessment. While the conversion rate of the polymerization reaction is commonly evaluated for bulk samples using differential scanning calorimetry (DSC), a tool for its evaluation in thin films is missing. Therefore, a new approach was developed for that matter using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The relation between the SIMS data integrated from inside thin films and the DSC results obtained on bulk samples with the same curing cycle allowed to calibrate the SIMS data. With this preliminary calibration of the technique, the polymerization of P-pPDA coatings can be locally determined, at the surface and along the depth of the coating, using dual-beam depth profiling with large argon cluster beam sputtering.  相似文献   
129.
Thermal properties and structure of bulk glasses of (As2S3)1?x(Sb4S4)x system (x varies from 0 to 60 mol%) were studied by differential scanning calorimetry and Raman spectroscopy. It was found that with increasing Sb content the glasses can be sorted out to the three groups. The structure of glasses with x ≤ 10 is build-up mainly from AsS3/2 pyramidal units and the well-known crystallization resistance of As2S3 can explain the reluctance of these undercooled liquids against crystallization. In glasses with a higher content of antimony, i.e., 10 < x ≤ 30 mol%, the vibration characteristics of As4S4 clusters appear. Undercooled melts of these glasses crystallize forming both β-As4S4 and high-temperature phases of Sb2S3. Structure of glasses with the highest antimony content (x > 30 mol%) is based on SbS3/2 structural units significantly lowering stability of their undercooled melts from which only Sb2S3 crystallizes.  相似文献   
130.
We describe the simple, scalable, single‐step, and polar‐solvent‐free synthesis of high‐quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals (NCs) with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules. High angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) revealed the cubic crystal structure and surface termination of the NCs with atomic resolution. The NCs exhibit high photoluminescence quantum yields, narrow emission line widths, and considerable air stability. Furthermore, we investigated the quantum size effects in CsPbBr3 and CsPbI3 nanoplatelets by tuning their thickness down to only three to six monolayers. The high quality of the prepared NCs (CsPbBr3) was confirmed by amplified spontaneous emission with low thresholds. The versatility of this synthesis approach was demonstrated by synthesizing different perovskite NCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号