首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1859篇
  免费   79篇
  国内免费   13篇
化学   1373篇
晶体学   14篇
力学   24篇
数学   209篇
物理学   331篇
  2023年   20篇
  2022年   20篇
  2021年   33篇
  2020年   48篇
  2019年   37篇
  2018年   32篇
  2017年   25篇
  2016年   42篇
  2015年   51篇
  2014年   46篇
  2013年   92篇
  2012年   115篇
  2011年   149篇
  2010年   64篇
  2009年   37篇
  2008年   105篇
  2007年   113篇
  2006年   111篇
  2005年   93篇
  2004年   96篇
  2003年   65篇
  2002年   65篇
  2001年   26篇
  2000年   28篇
  1999年   18篇
  1998年   18篇
  1997年   21篇
  1996年   22篇
  1994年   11篇
  1993年   18篇
  1992年   11篇
  1991年   15篇
  1990年   8篇
  1989年   11篇
  1988年   14篇
  1987年   8篇
  1985年   14篇
  1984年   21篇
  1983年   14篇
  1982年   8篇
  1981年   17篇
  1980年   14篇
  1978年   10篇
  1977年   14篇
  1976年   15篇
  1975年   16篇
  1974年   17篇
  1973年   11篇
  1972年   9篇
  1971年   7篇
排序方式: 共有1951条查询结果,搜索用时 15 毫秒
181.
How nanoparticles interact with biomembranes is central for understanding their bioactivity. Biomembranes wrap around nanoparticles if the adhesive interaction between the nanoparticles and membranes is sufficiently strong to compensate for the cost of membrane bending. In this article, we review recent results from theory and simulations that provide new insights on the interplay of bending and adhesion energies during the wrapping of nanoparticles by membranes. These results indicate that the interplay of bending and adhesion during wrapping is strongly affected by the interaction range of the particle–membrane adhesion potential, by the shape of the nanoparticles, and by shape changes of membrane vesicles during wrapping. The interaction range of the particle–membrane adhesion potential is crucial both for the wrapping process of single nanoparticles and the cooperative wrapping of nanoparticles by membrane tubules.  相似文献   
182.
A scanning angle (SA) Raman microscope with 532-nm excitation is reported for probing chemical content perpendicular to a sample interface. The instrument is fully automated to collect Raman spectra across a range of incident angles from 20.50 to 79.50° with an angular spread of 0.4 ± 0.2° and an angular uncertainty of 0.09°. Instrumental controls drive a rotational stage with a fixed axis of rotation relative to a prism-based sample interface mounted on an inverted microscope stage. Three benefits of SA Raman microscopy using visible wavelengths, compared to near infrared wavelengths are: (i) better surface sensitivity; (ii) increased signal due to the frequency to the fourth power dependence of the Raman signal, and the possibility for resonant enhancement; (iii) the need to scan a reduced angular range to shorten data collection times. These benefits were demonstrated with SA Raman measurements of thin polymer films of polystyrene or a diblock copolymer of polystyrene and poly(3-hexylthiophene-2,5-diyl). Thin film spectra were collected with a signal-to-noise ratio of 30 using a 0.25 s acquisition time.  相似文献   
183.
Analytical scale silica monoliths are commercially limited to three column selectivities (bare silica, C8 and C18). An in situ modification is reported in detail to overcome this barrier and allow for any functionality of choice to be bonded to the silica surface of the monolithic stationary phase support. The modification method was conducted on a commercial bare silica column to bond the C18 moiety to the silica surface through a silylation reaction. The C18 type of stationary phase was chosen, as this is the most commonly bonded functionality for the majority of stationary phases used for high-performance liquid chromatography (HPLC) separations. The C18-modified monolith’s performance was compared to a commercial C18 monolithic and a particle packed column of the same analytical scale column dimensions (100 × 4.6 mm). The modified C18 monolith proved to be of high quality with an efficiency of 73,267 N m?1, fast analysis times (operated at flow rates up to 3 mL min?1 using a conventional 400 bar HPLC system) and improved resolution of a set of polar and non-polar substituted aromatics in comparison to a commercial C18 monolith.  相似文献   
184.
Time binning is used to increase the number of photon counts in the peak channel of stimulated emission depletion fluorescence lifetime decay curves to determine how it affects the resulting lifetime image. The fluorescence lifetime of the fluorophore, Alexa Fluor 594 phalloidin, bound to F‐actin is probed in cultured S2 cells at a spatial resolution of ~40 nm. This corresponds to a 10‐fold smaller probe volume compared to confocal imaging, and a reduced number of photons contributing to the signal. Pixel‐by‐pixel fluorescence lifetime measurements and error analysis show that an average of 40 ± 30 photon counts in the peak channel with a signal‐to‐noise ratio of 20 is enough to calculate a reliable fluorescence lifetime from a single exponential fluorescence decay. No heterogeneity in the actin cytoskeleton in different regions of the cultured cells was measured in the 40–400 nm spatial regime.  相似文献   
185.
We report the observation of an unusual stripe-droplet transition in precompressed Langmuir monolayers consisting of mixtures of poly(ethylene) glycol (PEG) amphiphiles and phospholipids. This highly reproducible and fully reversible transition occurs at approximately zero surface pressure during expansion (or compression) of the monolayer following initial compression into a two-dimensional solid phase. It is characterized by spontaneous emergence of an extended, disordered stripe-like morphology from an optically homogeneous phase during gradual expansion. These stripe patterns appear as a transient feature and continuously progress, involving gradual coarsening and ultimate transformation into a droplet morphology upon further expansion. Furthermore, varying relative concentrations of the two amphiphiles and utilizing amphiphiles with considerably longer ethylene glycol headgroups reveal that this pattern evolution occurs in narrow concentration regimes, values of which depend on ethylene oxide headgroup size. These morphological transitions are reminiscent of those seen during a passage through a critical point by variations in thermodynamic parameters (e.g., temperature or pressure) as well as those involving spinodal decomposition. While the precise mechanism cannot be ascertained using present experiments alone, our observations can be reconciled in terms of modulations in competing interactions prompted by the pancake-mushroom-brush conformational transitions of the ethylene glycol headgroup. This in turn suggests that the conformational degree of freedom represents an independent order parameter, or a switch, which can induce large-scale structural reorganization in amphiphilic monolayers. Because molecular conformational changes are pervasive in biological membranes, we speculate that such conformational transition-induced pattern evolution might provide a physical mechanism by which membrane processes are amplified.  相似文献   
186.

Abstract  

An inevitable consequence of humans living in the Aluminium Age is the presence of aluminium in the brain. This non-essential, neurotoxic metal gains entry to the brain throughout all stages of human development, from the foetus through to old age. Human exposure to myriad forms of this ubiquitous and omnipresent metal makes its presence in the brain inevitable, while the structure and physiology of the brain makes it particularly susceptible to the accumulation of aluminium with age. In spite of aluminium’s complete lack of biological essentiality, it actually participates avidly in brain biochemistry and substitutes for essential metals in critical biochemical processes. The degree to which such substitutions are disruptive and are manifested as biological effects will depend upon the biological availability of aluminium in any particular physical or chemical compartment, and will under all circumstances be exerting an energy load on the brain. In short, the brain must expend energy in its ‘unconscious’ response to an exposure to biologically available aluminium. There are many examples where ‘biological effect’ has resulted in aluminium-induced neurotoxicity and most potently in conditions that have resulted in an aluminium-associated encephalopathy. However, since aluminium is non-essential and not required by the brain, its biological availability will only rarely achieve such levels of acuity, and it is more pertinent to consider and investigate the brain’s response to much lower though sustained levels of biologically reactive aluminium. This is the level of exposure that defines the putative role of aluminium in chronic neurodegenerative disease and, though thoroughly investigated in numerous animal models, the chronic toxicity of aluminium has yet to be addressed experimentally in humans. A feasible test of the ‘aluminium hypothesis’, whereby aluminium in the human brain is implicated in chronic neurodegenerative disease, would be to reduce the brain’s aluminium load to the lowest possible level by non-invasive means. The simplest way that this aim can be fulfilled in a significant and relevant population is by facilitating the urinary excretion of aluminium through the regular drinking of a silicic acid-rich mineral water over an extended time period. This will lower the body and brain burden of aluminium, and by doing so will test whether brain aluminium contributes significantly to chronic neurodegenerative diseases such as Alzheimer’s and Parkinson’s.  相似文献   
187.
This Article reports measurements of the intra- and intermolecular ordering of tight-binding octylphosphonate ligands on the surface of colloidal CdSe quantum dots (QDs) within solid state films, and the dependence of this order on the size of the QDs. The order of the organic ligands, as probed by vibrational sum frequency generation (SFG) spectroscopy, decreases as the radius of the QDs decreases; this decrease is correlated with a decrease in the order of underlying Cd(2+), as detected by X-ray photoelectron spectroscopy (XPS) line width measurements, for radii of the QDs, R > 2.4 nm, and is independent of the disorder of the Cd(2+) for R < 2.4 nm. We believe that, for R < 2.4, the decreasing order of the ligands with decreasing size is due to an increase in the curvature of the QD surfaces. Disorder in the Cd(2+) results from the presence of a shell of Cd(2+)-surfactant complexes that form during synthesis, so this work demonstrates the possibility for chemical control over molecular order within films of colloidal QDs by changing the surfactant mixture.  相似文献   
188.
The center line slope (CLS) method is often used to extract the frequency-frequency correlation function (FFCF) from 2D IR spectra to delineate dynamics and to identify homogeneous and inhomogeneous contributions to the absorption line shape of a system. While the CLS method is extremely efficient, quite accurate, and immune to many experimental artifacts, it has only been developed and properly applied to systems that have a single vibrational band, or to systems of two species that have spectrally resolved absorption bands. In many cases, the constituent spectra of multiple component systems overlap and cannot be distinguished from each other. This situation creates ambiguity when analyzing 2D IR spectra because dynamics for different species cannot be separated. Here a mathematical formulation is presented that extends the CLS method for a system consisting of two components (chemically distinct uncoupled oscillators). In a single component system, the CLS corresponds to the time-dependent portion of the normalized FFCF. This is not the case for a two component system, as a much more complicated expression arises. The CLS method yields a series of peak locations originating from slices taken through the 2D spectra. The slope through these peak locations yields the CLS value for the 2D spectra at a given T(w). We derive analytically that for two component systems, the peak location of the system can be decomposed into a weighted combination of the peak locations of the constituent spectra. The weighting depends upon the fractional contribution of each species at each wavelength and also on the vibrational lifetimes of both components. It is found that an unknown FFCF for one species can be determined as long as the peak locations (referred to as center line data) of one of the components are known, as well as the vibrational lifetimes, absorption spectra, and other spectral information for both components. This situation can arise when a second species is introduced into a well characterized single species system. An example is a system in which water exists in bulk form and also as water interacting with an interface. An algorithm is presented for back-calculating the unknown FFCF of the second component. The accuracy of the algorithm is tested with a variety of model cases in which all components are initially known. The algorithm successfully reproduces the FFCF for the second component within a reasonable degree of error.  相似文献   
189.
Methyl 2-[(diethoxyphosphoryl)methyl]benzoate reacts with several aldehydes to produce an alkenylphosphonate as the major product, together with varying amounts of the expected Horner-Wadsworth-Emmons product, a 1,2-disubstituted E-alkene. Use of a bulky aldehyde or the tert-butyl ester favours the normal HWE product.  相似文献   
190.
The association and dissociation of ligands plays a vital role in determining the reactivity of organometallic catalysts. Computational studies with density functional theory often fail to reproduce experimental metal-ligand bond energies, but recently functionals which better capture dispersion effects have been developed. Here we explore their application and discuss future challenges for computational studies of organometallic catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号