首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77696篇
  免费   322篇
  国内免费   374篇
化学   23960篇
晶体学   789篇
力学   6720篇
数学   31926篇
物理学   14997篇
  2018年   10436篇
  2017年   10257篇
  2016年   6053篇
  2015年   837篇
  2014年   284篇
  2013年   303篇
  2012年   3760篇
  2011年   10476篇
  2010年   5615篇
  2009年   6028篇
  2008年   6566篇
  2007年   8733篇
  2006年   199篇
  2005年   1284篇
  2004年   1511篇
  2003年   1955篇
  2002年   997篇
  2001年   239篇
  2000年   285篇
  1999年   150篇
  1998年   188篇
  1997年   142篇
  1996年   194篇
  1995年   114篇
  1994年   74篇
  1993年   92篇
  1992年   52篇
  1991年   63篇
  1990年   49篇
  1989年   58篇
  1988年   58篇
  1987年   57篇
  1986年   57篇
  1985年   46篇
  1984年   42篇
  1983年   36篇
  1982年   41篇
  1981年   38篇
  1980年   46篇
  1979年   44篇
  1978年   34篇
  1973年   25篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1910年   24篇
  1909年   41篇
  1908年   40篇
  1907年   32篇
  1904年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
We use different determinantal Hartree-Fock (HF) wave functions to calculate true variational upper bounds for the ground state energy of N spin-half fermions in volume V 0, with mass m, electric charge zero, and magnetic moment μ, interacting through magnetic dipole-dipole interaction. We find that at high densities when the average interparticle distance r 0 becomes small compared to the magnetic length r m ≡ 2mμ22, a ferromagnetic state with spheroidal occupation function n (), involving quadrupolar deformation, gives a lower upper bound compared to the variational energy for the uniform paramagnetic state or for the state with dipolar deformation. This system is unstable towards infinite density collapse, but we show explicitly that a suitable short-range repulsive (hard core) interaction of strength U 0 and range a can stop this collapse. The existence of a stable equilibrium high density ferromagnetic state with spheroidal occupation function is possible as long as the ratio of coupling constants Γcm ≡ (U 0 a 32) is not very small compared to 1.   相似文献   
953.
In this study, nanoparticle emission of TiO2 nanopowder coated on different substrates including wood, polymer, and tile, was evaluated in a simulation box and measured with a Scanning Mobility Particle Sizer (SMPS) for the first time. The coating process for the substrate followed the instructions given by the supply company. In the simulation box, UV light, a fan, and a rubber knife were used to simulate the sun light, wind, and human contacting conditions. Among the three selected substrates, tile coated with TiO2 nanopowder was found to have the highest particle emission (22 #/cm3 at 55 nm) due to nanopowder separation during the simulation process. The UV light was shown to increase the release of particle below 200 nm from TiO2 nanopowder coating materials. The results show that, under the conditions of UV lamps, a fan and scraping motion, particle number concentration or average emission rate decreases significantly after 60 and 90 min for TiO2/polymer and TiO2/wood, respectively. However, the emission rate continued to increase after 2 h of testing for TiO2/tile. It is suggested that nanoparticle emission evaluation is necessary for products with nanopowder coating.  相似文献   
954.
A new method for preparation of titania nanowires with diameter around 10 nm and length up to 2–3 μm is described. The precursor was prepared from sodium titanate by adding ethylene glycole (EG) and heating at temperature of 198°C for 6 h under reflux. The sodium titanate glycolate formed by this way aggregated into 1D nanostructures and was subsequently transformed into titania glycolate during a chemical treatment with 98% sulfuric acid. Titania nanowires with variable amount of anatase and rutile were prepared by heating to temperatures in the range 350–1000°C. The precursor as well as titania based samples were characterized by X-ray diffraction, Infrared spectroscopy, Scanning electron microscopy, High resolution transmission microscopy, Thermogravimetry, Differential thermal analysis, Evolved gas analysis and Emanation thermal analysis. The nitrogen adsorption/desorption was used for surface area and porosity determination. The photoactivity of the prepared titania samples was assessed by the photocatalytic decomposition of 4-chlorophenol in an aqueous slurry under UV irradiation of 365 nm wavelength.  相似文献   
955.
We show that it is possible to play ‘restricted’ two-player quantum games proposed originally by Marinatto and Weber (Phys. Lett. A 272:291–303, 2000) by purely macroscopic means, in the simplest case having as the only equipment a pack of 10 cards. Our example shows also that some apparently ‘genuine quantum’ results, even those that emerge as a consequence of dealing with entangled states, can be obtained by suitable application of Kolmogorovian probability calculus and secondary-school mathematics, without application of the ‘Hilbert space machinery’.  相似文献   
956.
An electrospinning process has been introduced to fabricate micro/nanofiber membranes having high porosity and specific surface area. When constantly/uniformly depositing the micro/nanofiber membrane on a target, the electrospun fibers require flushing out of the high charge and excessive remaining solvent built up, since these factors can interrupt the constant deposition rate of the electrospun fibers on substrates. These limitations can be overcome with a direct-electrospinning process, which can lower the charges of the electrospun fibers through a window of guiding electrodes and remaining solvent of the electrospun fibers during the spinning process by an air-blowing system. Because of the reduced charge accumulation of the electrospun fibers, the micro/nanofibers can be deposited on any kind of target, which may be a conductive or a non-conductive material. The fabricated membrane had a dramatically reduced charge, remaining solvent concentration, sufficient tensile modulus, and small pore-size distribution. To observe the possibility as a biomedical wound-dressing material, a bacteria-shielding test of the fabricated membrane was conducted. PACS 47.65.-d; 81.16.-c; 81.07.-b; 61.41.+e; 87.85.J-  相似文献   
957.
Strong interaction of a system of quantum emitters (e.g., two-level atoms) with electromagnetic field induces specific correlations in the system accompanied by a drastic increase of emitted radiation (superradiation or superfluorescence). Despite the fact that since its prediction this phenomenon was subject to a vigorous experimental and theoretical research, there remain open question, in particular, concerning the possibility of a first order phase transition to the superradiant state from the vacuum state. In systems of natural and charge-based artificial atom this transition is prohibited by “no-go” theorems. Here we demonstrate numerically and confirm analytically a similar transition in a one-dimensional quantum metamaterial – a chain of artificial atoms (qubits) strongly interacting with classical electromagnetic fields in a transmission line. The system switches from vacuum state to the quasi-superradiant (QS) phase with one or several magnetic solitons and finite average occupation of qubit excited states along the transmission line. A quantum metamaterial in the QS phase circumvents the “no-go” restrictions by considerably decreasing its total energy relative to the vacuum state by exciting nonlinear electromagnetic solitons.  相似文献   
958.
We describe a new type of the chiral magnetic effect (CME) that should occur in Weyl semimetals (WSMs) with an asymmetry in the dispersion relations of the left- and right-handed (LH and RH) chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source can generate a non-vanishing chiral chemical potential. This is due to the different capacities of the LH and RH chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation for a rotationally invariant WSM with different Fermi velocities in the left and right chiral Weyl cones; we also consider the case of a WSM with Weyl nodes at different energies. We argue that this effect is generically present in WSMs with different dispersion relations for LH and RH chiral Weyl cones, such as SrSi2 recently predicted as a WSM with broken inversion and mirror symmetries, as long as the chiral relaxation time is much longer than the transport scattering time.  相似文献   
959.
960.
In this paper, we study the global existence and decay rates of the solutions near Maxwellian for non-linear Fokker–Planck equations in the whole space. The global existence is proved by combining uniform-in-time energy estimates with local solution constructed by Picard type iteration sequence. The decay rates of the nonlinear model is obtained by using the precise spectral analysis of the linearized Fokker–Planck operator as well as the energy method. The nonlinearity in the model brings new difficulty to the energy estimates, which is resolved by additional tailored weighted-in-v energy estimates suitable for Fokker–Planck operators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号