Using the orbital-free quantum crystallography approach, we have disclosed the quantitative trends in electronic features for bonds of different strengths formed by tetrel (Tt) atoms in stable molecular complexes consisting of electrically neutral tetrahedral molecules and halide anions. We have revealed the role of the electrostatic and exchange-correlation components of the total one-electron static potential that are determined by the equilibrium atomic structure and by kinetic Pauli potential, which reflects the spin-dependent electron motion features of the weak and strong bonds. The gap between the extreme positions in the electrostatic and total static potentials along the line linking the Tt atom and halide anion is wide for weak bonds and narrow for strong ones. It is in very good agreement with the number of minima in the Pauli potential between the bounded atoms. This gap exponentially correlates with the exchange-correlation potential in various series with a fixed nucleophilic fragment. A criterion for categorizing the noncovalent tetrel bonds (TtB) based on the potential features is suggested. 相似文献
A new method for the fixation of polymethacrylate monoliths within titanium tubing of up to 0.8 mm I.D. for use as a chromatographic column under elevated temperatures and pressures is described. The preparation of butyl methacrylate–ethylene dimethacrylate-based monolithic stationary phases with desired porous structures was achieved within titanium tubing with pre-oxidised internal walls. The oxidised titanium surface was subsequently silanised with 3-trimethoxysilylpropyl methacrylate resulting in tight bonding of butyl methacrylate porous monolith to the internal walls, providing stationary phase stability at column temperatures up to 110 °C and at operating column pressure drops of >28 MPa. The titanium housed monoliths exhibited a uniform and dense porous structure, which provided peak efficiencies of up to 59,000 theoretical plates per meter when evaluated for the separation of small molecules in reversed-phase mode, under optimal conditions (achieved at 15 μL/min and temperature of 110 °C for naphthalene with a retention factor, k = 0.58). The developed column was applied to the reversed-phase isocratic separation of a text mixture of pesticides. 相似文献
Olive oil polyphenols have important biological properties which closely depend on their bioavailability; it is, therefore,
essential to understand how polyphenols are absorbed, metabolized, and eliminated from the body. An analytical method based
on rapid-resolution liquid chromatography (RRLC) coupled with mass spectrometric detection with a time-of-flight analyzer
(RRLC–ESI-TOF MS) has been developed for analysis of the main olive oil phenolic compounds and their metabolites in human
urine. Urine samples from ten healthy volunteers were collected before and 2, 4, and 6 h after intake of 50 mL extra-virgin
olive oil. The proposed method includes liquid–liquid extraction with ethyl acetate, which provides extraction recoveries
of the phenolic compounds studied between 35 and 75% from spiked urine samples. Good repeatability was obtained—the relative
standard deviations (RSDs) of peak areas in intra-day and inter-day studies were 4.3 and 6.5%, respectively. Statistical studies
enabled us to discriminate between urine samples before and after intake, and facilitated the search for m/z values enabling this discrimination. Based on the very accurate mass information and the isotopic pattern provided by the
TOF MS analyzer, together with other available information, ten of these biomarkers and more than 50 metabolites, obtained
through phase I and phase II biotransformation reactions, were tentatively identified. Additionally, kinetic studies were
conducted on the metabolites identified as possible biomarkers; for most of the compounds concentrations were maximum in the
first two hours. 相似文献
Transport properties of perovskite-type Sr11Mo4O23 and composite Sr11Mo4O23 - 1 wt% Al2O3 were studied at 400–1300 K in the oxygen partial pressure range from 0.21 down to 10−19 atm. The electromotive force and faradaic efficiency measurements, in combination with the energy-dispersive spectroscopy of the fractured electrochemical cells, unambiguously showed prevailing role of the oxygen ionic conductivity under oxidizing conditions. At temperatures above 600 K, protonic and cationic transport can be neglected. The oxygen ion transference numbers vary in the range of 0.95–1.00 at 973–1223 K. At temperatures lower than 550 K, the total conductivity of Sr11Mo4O23 - 1 wt% Al2O3 composite measured by impedance spectroscopy tends to increase in wet atmospheres, thus indicating that hydration and protonic transport become significant. Reducing oxygen partial pressure below 10−10–10−9 atm leads to a significant increase in the n-type electronic conduction. The average thermal expansion coefficients in oxidizing atmospheres are (14.3–15.0) × 10−6 K−1 at 340–740 K and (18.3–19.2) × 10−6 K−1 at 870–1370 K.
Parahydrogen-induced polarization with heterogeneous catalysts (HET-PHIP) has been a subject of extensive research in the last decade since its first observation in 2007. While NMR signal enhancements obtained with such catalysts are currently below those achieved with transition metal complexes in homogeneous hydrogenations in solution, this relatively new field demonstrates major prospects for a broad range of advanced fundamental and practical applications, from providing catalyst-free hyperpolarized fluids for biomedical magnetic resonance imaging (MRI) to exploring mechanisms of industrially important heterogeneous catalytic processes. This review covers the evolution of the heterogeneous catalysts used for PHIP observation, from metal complexes immobilized on solid supports to bulk metals and single-atom catalysts and discusses the general visions for maximizing the obtained NMR signal enhancements using HET-PHIP. Various practical applications of HET-PHIP, both for catalytic studies and for potential production of hyperpolarized contrast agents for MRI, are described. 相似文献
Breathing crystals based on polymer-chain complexes of Cu(hfac)(2) with nitroxides exhibit thermally and light-induced magnetostructural anomalies in many aspects similar to a spin crossover. In the present work, we report the synthesis and investigation of a new family of Cu(hfac)(2) complexes with tert-butylpyrazolylnitroxides and their nonradical structural analogues. The complexes with paramagnetic ligands clearly exhibit structural rearrangements in the copper(II) coordination units and accompanying magnetic phenomena characteristic for breathing crystals. Contrary to that, their structural analogues with diamagnetic ligands do not undergo rearrangements in the copper(II) coordination environments. This confirms experimentally the crucial role of paramagnetic ligands and exchange interactions between them and copper(II) ions for the origin of magnetostructural anomalies in this family of molecular magnets. 相似文献
A new route to lactide, which is a key building block of the bioplastic polylactic acid, is proposed involving a continuous catalytic gas‐phase transesterification of renewable alkyl lactates in a scalable fixed‐bed setup. Supported TiO2/SiO2 catalysts are highly selective to lactide, with only minimal lactide racemization. The solvent‐free process allows for easy product separation and recycling of unconverted alkyl lactates and recyclable lactyl intermediates. The catalytic activity of TiO2/SiO2 catalysts was strongly correlated to their optical properties by DR UV/Vis spectroscopy. Catalysts with high band‐gap energy of the supported TiO2 phase, indicative of a high surface spreading of isolated Ti centers, show the highest turnover frequency per Ti site. 相似文献
Specific sorption sites for nitrogen, N2, in NaLSX and LiLSX zeolites were investigated using a DRIFT spectroscopic method. Sorption of molecular hydrogen, H2, by NaLSX or LiLSX zeolite at 77 K with DRIFT control of perturbation of sorbed molecules allowed to discriminate two or three different types of specific sorption sites in the respective zeolites. Their H–H stretching frequencies are 4077 and 4081 cm–1 for NaLSX, and 4061, 4084 and 4129 cm–1 for LiLSX. With reference to an independent investigation by methods of both sorption thermodynamics and molecular modeling for N2 sorption on LiLSX, the first two of the corresponding bands were ascribed to H2 sorption on lithium cations, Li+, localized in supercages of the faujasite, FAU, zeolite framework at sites SIII and SIII, while the latter band most likely belongs to H2 sorption on Li+ cations at sites SII, and on hydroxyl groups, OH. Sorption of N2 by Li+ cations at sites SIII and SIII is the strongest, resulting in a decrease of intensity of the corresponding DRIFT bands that stem from subsequent H2 sorption. Nitrogen sorption by Li+ cations at sites SII is much weaker. Sorption of N2 on Na+ cations at sites SIII in NaLSX zeolite is also stronger than by Na+ cations at sites SII. 相似文献
Pincer complexes featuring readily tunable tridentate ligand frameworks comprise one of the most actively studied classes of organometallic and metal–organic compounds and find extensive use in catalysis, organic synthesis, materials science, and other fields of chemistry and allied disciplines. Currently growing attention is devoted to non‐classical ligand scaffolds, such as functionalized carboxamides, which offer multiple options for directed structural modifications. In this study, the reactions of (methylsulfanyl)acetyl and propanoyl chlorides with 2‐(aminomethyl)pyridine, 2‐(2‐aminoethyl)pyridine, 8‐aminoquinoline and 2‐(diphenylthiophosphoryl)aniline afford a series of new pincer‐type ligands based on functionalized carboxamides. The ligands obtained readily undergo direct cyclopalladation under the action of PdCl2(NCPh)2 in dichloromethane at room temperature, resulting in Pd(II) pincer complexes with N,N,S‐ and S,N,S‐donor sets. Importantly, some of the cyclopalladated derivatives can also be produced efficiently under solvent‐free conditions according to the approach recently developed by our group. The complexes obtained have been tested for cytotoxicity against several human cancer cell lines and catalytic activity in the model Suzuki reaction. The results have been compared to those for the related Pd(II) pincer complexes to define the main structure–activity relationships and to outline the most promising structures for further investigations. 相似文献