首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1168篇
  免费   49篇
  国内免费   6篇
化学   731篇
晶体学   3篇
力学   41篇
数学   275篇
物理学   173篇
  2023年   11篇
  2022年   18篇
  2021年   34篇
  2020年   38篇
  2019年   27篇
  2018年   24篇
  2017年   17篇
  2016年   35篇
  2015年   36篇
  2014年   37篇
  2013年   53篇
  2012年   68篇
  2011年   63篇
  2010年   38篇
  2009年   35篇
  2008年   35篇
  2007年   58篇
  2006年   71篇
  2005年   48篇
  2004年   34篇
  2003年   33篇
  2002年   28篇
  2001年   22篇
  2000年   13篇
  1999年   10篇
  1998年   12篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   11篇
  1992年   14篇
  1991年   7篇
  1983年   7篇
  1981年   10篇
  1980年   6篇
  1979年   6篇
  1978年   8篇
  1977年   10篇
  1976年   6篇
  1975年   5篇
  1974年   7篇
  1973年   7篇
  1967年   5篇
  1957年   6篇
  1956年   6篇
  1930年   5篇
  1922年   6篇
  1899年   5篇
  1894年   5篇
  1888年   5篇
排序方式: 共有1223条查询结果,搜索用时 15 毫秒
61.
Confinement of a catalyst can have a significant impact on catalytic performance and can lead to otherwise difficult to achieve catalyst properties. Herein, we report the design and synthesis of a novel caged catalyst system Co−G@Fe8(Zn−L ⋅ 1)6 , which is soluble in both polar and apolar solvents without the necessity of any post-functionalization. This is a rare example of a metal-coordination cage able to bind catalytically active porphyrins that is soluble in solvents spanning a wide variety of polarity. This system was used to investigate the combined effects of the solvent and the cage on the catalytic performance in the cobalt catalyzed cyclopropanation of styrene, which involves radical intermediates. Kinetic studies show that DMF has a protective influence on the catalyst, slowing down deactivation of both [Co(TPP)] and Co−G@Fe8(Zn−L ⋅ 1)6 , leading to higher TONs in this solvent. Moreover, DFT studies on the [Co(TPP)] catalyst show that the rate determining energy barrier of this radical-type transformation is not influenced by the coordination of DMF. As such, the increased TONs obtained experimentally stem from the stabilizing effect of DMF and are not due to an intrinsic higher activity caused by axial ligand binding to the cobalt center ([Co(TPP)(L)]) . Remarkably, encapsulation of Co−G led to a three times more active catalyst than [Co(TPP)] (TOFini) and a substantially increased TON compared to both [Co(TPP)] and free Co−G . The increased local concentration of the substrates in the hydrophobic cage compared to the bulk explains the observed higher catalytic activities.  相似文献   
62.
63.
New materials were obtained by incorporating in polypropylene (PP) matrix 60% wood wastes resulting after extraction with supercritical carbon dioxide, water, and ethanol. Structural, mechanical, thermal, and rheological characterizations, as well as moisture uptake of the composites, were evaluated before and after accelerated weathering. It was found that the extraction method influenced the composite properties due to the hydrophilic-hydrophobic balance. The addition of extracted fibers results in an increase in hardness and tensile properties and a decrease of impact strength as compared to PP.  相似文献   
64.
This paper describes the development of a new sensor based on an ionic organic film. The amphiphilic molecule, 4‐[(4‐decyloxyphenyl)‐ethynyl]‐1‐methylpyridinium iodide (10PyI), which has liquid‐crystalline properties, was synthesized and applied in the construction of a GCE/10PyI sensor. Analytical parameters for caffeic acid, repeatability (4.8 %), reproducibility (2.8 %), linearity (two ranges: 9.9×10?7 to 3.8×10?5 mol L?1 and 4.7×10?5 to 9.9×10?5 mol L?1) and detection limits (9.0×10?7 mol L?1 and 8.7×10?6 mol L?1), were determined. The method was successfully applied in the determination of total phenolic compounds (TPC) in mate herb extracts.  相似文献   
65.
The La0.6Sr0.4Co0.2Fe0.8O3 (LSCF48) cathode material was used as a protective-conducting coating on an interconnect made of Crofer 22 APU ferritic steel intended for application in intermediate-temperature solid oxide fuel cell (IT-SOFC) stacks. The LSCF48 coating was deposited on the surface of the steel via screen-printing followed by appropriate thermal treatment. The oxidation kinetics of the Crofer 22 APU steel—uncoated and coated with LSCF48—approximately obeys the parabolic rate law in air at 1,073 K under isothermal and cyclic oxidation conditions. The oxidation rate for uncoated steel is higher than that for coated steel. SEM–EDS and XRD investigations showed that the LSCF48 coating interacts with the steel during long-term oxidation in the afore-mentioned thermal conditions, and an intermediate multilayer interfacial zone is formed. This intermediate layer leads to lower area specific resistance in air at 1,073 K in comparison to the Crofer 22 APU steel without surface modification.  相似文献   
66.
Binders present an important part of the powder metallurgy technology as they are vital to provide efficient powder agglomeration and/or lubrication during shaping. At the same time, they have to be easily removed from the compacts during initial stages of sintering without any harmful effect for the base material, as well as for the environment. Therefore, behavior of gelatin as a binder for stainless- and tool-steel gas-atomised powder compacts was studied by thermal analysis and electron microscopy. Thermal analysis showed that peak mass-loss occurred in the range between 340 and 370 °C, depending on the base powder and heating rate. Risk for base powder oxidation at temperatures below 425 °C was detected. Based on the obtained results, it is recommended to perform debinding at ~425 °C after applying a heating rate of around 7.5 °C min?1. Only in this way efficient enough binder removal can be obtained concurrently to avoiding base powder oxidation.  相似文献   
67.
Parahydrogen induced polarization was employed to prepare a relatively long‐lived correlated nuclear spin state between methylene and methyl protons in propane gas. Conventionally, such states are converted into a strong NMR signal enhancement by transferring the reaction product to a high magnetic field in an adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiment. However, the relaxation time T1 of ~0.6 s of the resulting hyperpolarized propane is too short for potential biomedical applications. The presented alternative approach employs low‐field MRI to preserve the initial correlated state with a much longer decay time TLLSS=(4.7±0.5) s. While the direct detection at low‐magnetic fields (e.g. 0.0475 T) is challenging, we demonstrate here that spin‐lock induced crossing (SLIC) at this low magnetic field transforms the long‐lived correlated state into an observable nuclear magnetization suitable for MRI with sub‐millimeter and sub‐second spatial and temporal resolution, respectively. Propane is a non‐toxic gas, and therefore, these results potentially enable low‐cost high‐resolution high‐speed MRI of gases for functional imaging of lungs and other applications.  相似文献   
68.
69.
A novel variant of an iridium‐based organometallic catalyst was synthesized and used to enhance the NMR signals of pyridine in a heterogeneous phase by immobilization on polymer microbead solid supports. Upon administration of parahydrogen (pH2) gas to a methanol mixture containing the HET‐SABRE catalyst particles and the pyridine, up to fivefold enhancements were observed in the 1H NMR spectra after sample transfer to high field (9.4 T). Importantly, enhancements were not due to any residual catalyst molecules in solution, thus supporting the true heterogeneity of the SABRE process. Further significant improvements may be expected by systematic optimization of experimental parameters. Moreover, the heterogeneous catalyst is easy to separate and recycle, thus opening a door to future potential applications varying from spectroscopic studies of catalysis, to imaging metabolites in the body without concern of contamination from expensive and potentially toxic metal catalysts or accompanying organic molecules.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号