首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1149篇
  免费   2篇
  国内免费   11篇
化学   608篇
晶体学   6篇
力学   43篇
数学   352篇
物理学   153篇
  2019年   12篇
  2017年   8篇
  2016年   13篇
  2015年   14篇
  2014年   18篇
  2013年   33篇
  2012年   25篇
  2011年   40篇
  2010年   20篇
  2009年   23篇
  2008年   41篇
  2007年   50篇
  2006年   36篇
  2005年   41篇
  2004年   41篇
  2003年   28篇
  2002年   26篇
  2001年   27篇
  2000年   16篇
  1999年   13篇
  1998年   19篇
  1997年   12篇
  1996年   13篇
  1995年   21篇
  1994年   19篇
  1993年   11篇
  1992年   19篇
  1991年   15篇
  1990年   12篇
  1989年   15篇
  1988年   20篇
  1987年   21篇
  1986年   33篇
  1985年   27篇
  1984年   16篇
  1983年   11篇
  1982年   19篇
  1981年   16篇
  1980年   29篇
  1979年   31篇
  1978年   22篇
  1977年   10篇
  1976年   19篇
  1975年   19篇
  1974年   27篇
  1973年   20篇
  1972年   15篇
  1971年   14篇
  1970年   13篇
  1968年   8篇
排序方式: 共有1162条查询结果,搜索用时 15 毫秒
31.
32.
Three octahedral complexes containing a (cis-cyclam)iron(III) moiety and an O,N-coordinated o-iminobenzosemiquinonate pi radical anion have been synthesized and characterized by X-ray crystallography at 100 K: [Fe(cis-cyclam)(L(1-3)(ISQ))](PF(6))(2) (1-3), where (L(1-3)(ISQ)) represents the monoanionic pi radicals derived from one-electron oxidations of the respective dianion of o-imidophenolate(2-), L(1), 2-imido-4,6-di-tert-butylphenolate(2-), L(2), and N-phenyl-2-imido-4,6-di-tert-butylphenolate(2-), L(3). Compounds 1-3 possess an S(t) = 0 ground state, which is attained via strong intramolecular antiferromagnetic exchange coupling between a low-spin central ferric ion (S(Fe) = 1/2) and an o-imino-benzosemiquinonate(1-) pi radical (S(rad) = 1/2). Zero-field M?ssbauer spectra of 1-3 at 80 K confirm the low-spin ferric electron configuration: isomer shift delta = 0.26 mm s(-1) and quadrupole splitting DeltaE(Q) = 1.96 mm s(-1) for 1, 0.28 and 1.93 for 2, and 0.33 and 1.88 for 3. All three complexes undergo a reversible, one-electron reduction of the coordinated o-imino-benzosemiquinonate ligand, yielding an [Fe(III)(cis-cyclam)(L(1-3)(IP))](+) monocation. The monocations of 1 and 2 display very similar rhombic signals in the X-band EPR spectra (g = 2.15, 2.12, and 1.97), indicative of low-spin ferric species. In contast, the monocation of 3 contains a high-spin ferric center (S(Fe) = 5/2) as is deduced from its M?ssbauer and EPR spectra.  相似文献   
33.
The interactions of amino acids with inorganic surfaces are of interest for biologists and biotechnologists alike. However, the structural determinants of peptide–surface interactions have remained elusive, but are important for a structural understanding of the interactions of biomolecules with gold surfaces. Molecular dynamics simulations are a tool to analyze structures of amino acids on surfaces. However, such an approach is challenging due to lacking parameterization for many surfaces and the polarizability of metal surfaces. Herein, we report DFT calculations of amino acid fragments in vacuo and molecular dynamics simulations of the interaction of all amino acids with a gold(111) surface in explicit solvent, using the recently introduced polarizable gold force field GolP. We describe preferred orientations of the amino acids on the metal surface. We find that all amino acids preferably interact with the gold surface at least partially with their backbone, underlining an unfolding propensity of gold surfaces.  相似文献   
34.
35.
Epitaxial growth on GaN bulk single crystal substrates sets new standards in GaN material quality. The outstanding properties provide insights into fundamental material parameters (e.g. lattice constants, exciton binding energies, etc.) with a precision not obtainable from heteroepitaxial growth on sapphire or SiC. With metalorganic vapor phase epitaxy (MOVPE) we realized unstrained GaN layers with dislocation densities about six orders of magnitude lower than in heteroepitaxy. By the use of dry etching techniques for surface preparation, an important improvement of crystal quality is achieved. Those layers reveal an exceptional optical quality as determined by a reduction of the low-temperature photoluminescence (PL) linewidth from 5 meV to 0.1 meV and a reduced X-ray diffraction (XRD) rocking curve width from 400 to 20 arcsec. As a consequence of the narrow PL linewidths, new features as, e. g. a fivefold fine structure of the donor-bound exciton line at 3.471 eV was detected. Additionally, all three free excitons as well as their excited states are visible in PL at 2 K.

Dry etching techniques for surface preparation allow morphologies of the layers suitable for device applications. We report on InGaN/GaN multi-quantum-well (MQW)_ structures as well as GaN pn- and InGaN/GaN double heterostructure light emitting diodes (LEDs) on GaN bulk single crystal substrates. Those LEDs are twice as bright as their counterparts grown on sapphire. In addition they reveal an improved high power characteristics, which is attributed to an enhanced crystal quality and an increased p-doping.  相似文献   

36.
37.
UV irradiation (266 or 280 nm) of benzhydryl triarylphosphonium salts Ar(2)CH-PAr(3)(+)X(-) yields benzhydryl cations Ar(2)CH(+) and/or benzhydryl radicals Ar(2)CH(?). The efficiency and mechanism of the photo-cleavage were studied by nanosecond laser flash photolysis and by ultrafast spectroscopy with a state-of-the-art femtosecond transient spectrometer. The influences of the photo-electrofuge (Ar(2)CH(+)), the photo-nucleofuge (PPh(3) or P(p-Cl-C(6)H(4))(3)), the counterion (X(-) = BF(4)(-), SbF(6)(-), Cl(-), or Br(-)), and the solvent (CH(2)Cl(2) or CH(3)CN) were investigated. Photogeneration of carbocations from Ar(2)CH-PAr(3)(+)BF(4)(-) or -SbF(6)(-) is considerably more efficient than from typical neutral precursors (e.g., benzhydryl chlorides or bromides). The photochemistry of phosphonium salts is controlled by the degree of ion pairing, which depends on the solvent and the concentration of the phosphonium salts. High yields of carbocations are obtained by photolyses of phosphonium salts with complex counterions (X(-) = BF(4)(-) or SbF(6)(-)), while photolyses of phosphonium halides Ar(2)CH-PPh(3)(+)X(-) (X(-) = Cl(-) or Br(-)) in CH(2)Cl(2) yield benzhydryl radicals Ar(2)CH(?) due to photo-electron transfer in the excited phosphonium halide ion pair. At low concentrations in CH(3)CN, the precursor salts are mostly unpaired, and the photo-cleavage mechanism is independent of the nature of the counter-anions. Dichloromethane is better suited for generating the more reactive benzhydryl cations than the more polar and more nucleophilic solvents CH(3)CN or CF(3)CH(2)OH. Efficient photo-generation of the most reactive benzhydryl cations (3,5-F(2)-C(6)H(3))(2)CH(+) and (4-(CF(3))-C(6)H(4))(2)CH(+) was only achieved using the photo-leaving group P(p-Cl-C(6)H(4))(3) and the counter-anion SbF(6)(-) in CH(2)Cl(2). The lifetimes of the photogenerated benzhydryl cations depend greatly on the decay mechanisms, which can be reactions with the solvent, with the photo-leaving group PAr(3), or with the counter-anion X(-) of the precursor salt. However, the nature of the photo-leaving group and the counterion of the precursor phosphonium salt do not affect the rates of the reactions of the obtained benzhydryl cations toward added nucleophiles. The method presented in this work allows us to generate a wide range of donor- and acceptor-substituted benzhydryl cations Ar(2)CH(+) for the purpose of studying their electrophilic reactivities.  相似文献   
38.
    
System analysis and optimization of combustion engines and engine components are increasingly supported by digital simulations. In the simulation process of combustion engines multi physics simulations are used. As an example, in the simulation of a crank drive the mechanical subsystem is coupled to a hydrodynamic subsystem. As far as the modeling of the mechanical subsystems is concerned, elastic multibody systems are frequently used. During the simulation many equations must be solved simultaneously, the hydrodynamic equations as well as the equations of motion of each body in the elastic multibody system. Since the discretization of the elastic bodies, e.g with the help of the finite element method, introduces a large number of elastic degrees of freedom, an efficient simulation of the system becomes difficult. The linear model reduction of the elastic degrees of freedom is a key step for using flexible bodies in multibody systems and turning simulations more efficient from a computational point of view. In recent years, a variety of new reduction methods alongside the traditional techniques were developed in applied mathematics. Some of these methods are reviewed and compared for reducing the equations of motion of an elastic body used in multibody systems. The special focus of this work is on balanced truncation model order reduction, which is a singular value based reduction technique using the Gramian matrices of the system. We investigate a version of this method that is adapted to the structure of a special class of second order dynamical systems which is important for the particular application discussed here. The simulation of a crank drive with a flexible crankshaft is taken as technically relevant example. The results are compared to other methods like Krylov approaches or modal reduction.  相似文献   
39.
    
The method of elastic multibody systems is frequently used to describe the dynamical behavior of the mechanical subsystems in multi‐physics simulations. One important issue for the simulation of elastic multibody systems is the error‐controlled reduction of the flexible body's degrees of freedom. By the use of second order frequency‐weighted Gramian matrix based reduction techniques the distribution of the loads is taken into account a‐priori and very accurate models can be obtained within a predefined frequency range and even a‐priori error bounds are available. However, the calculation of the frequency‐weighted Gramian matrices requires high computational effort. Hence, appropriate approximation schemes have to be used to find the dominant eigenspace of these matrices. In the current contribution, the matrix integral needed for calculating the Gramian matrices is approximated by quadratures using integral kernel snapshots. The number and location of these snapshots have a strong influence on the reduction results. Sophisticated snapshot selection methods based on Greedy algorithms from the reduced basis methods are used to construct the optimal location of snapshot frequencies. The method can be viewed as an automatic determination of optimal frequency weighting and as an adaptive learning of quadrature rules. One ingredient of Greedy algorithms is the need of error measures. To gain computational advantage two different error estimators are derived and used in the Greedy algorithm instead of the absolute or relative error.  相似文献   
40.
    
In this article, an ALE finite element method to simulate the partial melting of a workpiece of metal is presented. The model includes the heat transport in both the solid and liquid part, fluid flow in the liquid phase by the Navier–Stokes equations, tracking of the melt interface solid/liquid by the Stefan condition, treatment of the capillary boundary accounting for surface tension effects and a radiative boundary condition. We show that an accurate treatment of the moving boundaries is crucial to resolve their respective influences on the flow field and thus on the overall energy transport correctly. This is achieved by a mesh‐moving method, which explicitly tracks the phase boundary and makes it possible to use a sharp interface model without singularities in the boundary conditions at the triple junction. A numerical example describing the welding of a thin‐steel wire end by a laser, where all aforementioned effects have to be taken into account, proves the effectiveness of the approach.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号