首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   9篇
  国内免费   3篇
化学   248篇
晶体学   1篇
力学   14篇
数学   41篇
物理学   37篇
  2023年   3篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2016年   6篇
  2015年   5篇
  2014年   8篇
  2013年   8篇
  2012年   13篇
  2011年   15篇
  2010年   9篇
  2009年   10篇
  2008年   15篇
  2007年   14篇
  2006年   20篇
  2005年   11篇
  2004年   15篇
  2003年   13篇
  2002年   9篇
  2001年   3篇
  2000年   11篇
  1999年   12篇
  1998年   4篇
  1997年   2篇
  1996年   6篇
  1995年   19篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   8篇
  1990年   6篇
  1989年   4篇
  1988年   11篇
  1987年   9篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   4篇
  1981年   3篇
  1980年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
  1967年   1篇
  1940年   2篇
  1939年   4篇
  1930年   2篇
  1928年   1篇
  1899年   1篇
排序方式: 共有341条查询结果,搜索用时 93 毫秒
91.
We report a theoretical and experimental investigation of the dynamical Stark effect in a tetrahedral molecule, silane (SiH(4)). We use a tetrahedral formalism and Floquet theory to calculate the absorption spectra for the molecule dressed by an intense nonresonant pulsed laser. Experimentally, the dynamical Stark effect is observed for transitions of the nu(2)/nu(4) vibrational polyad of SiH(4) by means of nanosecond diode laser absorption spectroscopy and a Nd:YAG laser excitation. Copyright 2000 Academic Press.  相似文献   
92.
93.
94.
95.
We present an overview of mechanisms responsible for simple or complex oscillatory behavior in metabolic and genetic control networks. Besides simple periodic behavior corresponding to the evolution toward a limit cycle we consider complex modes of oscillatory behavior such as complex periodic oscillations of the bursting type and chaos. Multiple attractors are also discussed, e.g., the coexistence between a stable steady state and a stable limit cycle (hard excitation), or the coexistence between two simultaneously stable limit cycles (birhythmicity). We discuss mechanisms responsible for the transition from simple to complex oscillatory behavior by means of a number of models serving as selected examples. The models were originally proposed to account for simple periodic oscillations observed experimentally at the cellular level in a variety of biological systems. In a second stage, these models were modified to allow for complex oscillatory phenomena such as bursting, birhythmicity, or chaos. We consider successively (1) models based on enzyme regulation, proposed for glycolytic oscillations and for the control of successive phases of the cell cycle, respectively; (2) a model for intracellular Ca(2+) oscillations based on transport regulation; (3) a model for oscillations of cyclic AMP based on receptor desensitization in Dictyostelium cells; and (4) a model based on genetic regulation for circadian rhythms in Drosophila. Two main classes of mechanism leading from simple to complex oscillatory behavior are identified, namely (i) the interplay between two endogenous oscillatory mechanisms, which can take multiple forms, overt or more subtle, depending on whether the two oscillators each involve their own regulatory feedback loop or share a common feedback loop while differing by some related process, and (ii) self-modulation of the oscillator through feedback from the system's output on one of the parameters controlling oscillatory behavior. However, the latter mechanism may also be viewed as involving the interplay between two feedback processes, each of which might be capable of producing oscillations. Although our discussion primarily focuses on the case of autonomous oscillatory behavior, we also consider the case of nonautonomous complex oscillations in a model for circadian oscillations subjected to periodic forcing by a light-dark cycle and show that the occurrence of entrainment versus chaos in these conditions markedly depends on the wave form of periodic forcing. (c) 2001 American Institute of Physics.  相似文献   
96.
97.
The water soluble charged silsesquioxane that contains the bridged 1,4-diazoniabicyclo[2.2.2]octane chloride group, was used as stabilizing agent and size controller in the synthesis of gold nanoparticles smaller than 15?nm in aqueous medium. The gold nanoparticle dispersion was converted in solid powder form by evaporation. This powder presented organized structure imposed by the presence of charged organic group, similar to organized structure already observed for pure silsesquioxane. The gold nanoparticles in solid powder form presented high storage stability for several months, at ambient conditions, and can be completely redispersed in water again. After redispersion, the optical properties of gold nanoparticles, observed by ultra-violet and visible spectroscopy, and their morphological characteristics, investigated by transmission electron microscopy, are preserved. The gold nanoparticle aqueous dispersion was used as a vehicle of nanoparticles in the synthesis of sol?Cgel silica based hybrid material. This xerogel was characterized by N2 adsorption?Cdesorption isotherms, showing 260?m2g?1, and it was applied in a satisfactory way as catalyst for p-nitrophenol reduction to p-aminephenol.  相似文献   
98.
99.
An optical measurement method for two-phase flow pattern characterization in microtubes has been utilized to determine the frequency of bubbles generated in a microevaporator, the coalescence rates of these bubbles and their length distribution as well as their mean velocity. The tests were run in a 0.5 mm glass channel using saturated R-134a at 30 °C (7.7 bar). The optical technique uses two laser diodes and photodiodes to measure these parameters and to also identify the flow regimes and their transitions. Four flow patterns (bubbly flow, slug flow, semi-annular flow and annular flow) with their transitions were detected and observed also by high speed video. It was also possible to characterize bubble coalescence rates, which were observed here to be an important phenomena controlling the flow pattern transition in microchannels. Two types of coalescence occurred depending on the presence of small bubbles or not. The two-phase flow pattern transitions observed did not compare well to a leading macroscale flow map for refrigerants nor to a microscale map for air–water flows. Time averaged cross-sectional void fractions were also calculated indirectly from the mean two-phase vapor velocities and compared reasonably well to homogeneous values.  相似文献   
100.
This paper experimentally investigates the holes interaction effect on the sound absorption coefficient of micro-perforated panels under high and medium sound levels. The theoretical formulations are based on a semi-empirical approach and the use of Fok’s function to model the acoustic surface impedance. For the high sound level regime, an empirical power law involving three coefficients is adapted. It is shown theoretically and experimentally that these coefficients can lead to optimized absorption performance and particularly, a formula relating the critical Reynolds number (Reynolds number value after which the absorption coefficient decreases with the increase of sound level) and the center-to-center distance between the perforations is derived. It is demonstrated that the first coefficient of the nonlinear acoustic resistance strongly depends on the separation distance between the apertures and decreases with a decrease of this latter distance. Analysis of the data reveals the fact that even with Holes Interaction Effect (HIE), the nonlinear reactance dependence on velocity is still very low compared to the resistance-velocity dependence. Four perforated panels of 1.5 mm thickness with different separation distances between the holes (from widely to closely separation) were built and tested. Experimental results performed with an impedance tube are compared with the described model for HIE. To test the dependence of the coefficients on frequency, the experiments are carried out for two different excitation frequencies (292 Hz and 506 Hz). The results can be used for designing optimal perforated panels for ducts, silencers and for the automotive industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号