首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   54篇
  国内免费   45篇
化学   272篇
晶体学   2篇
力学   17篇
综合类   3篇
数学   32篇
物理学   94篇
  2024年   2篇
  2023年   23篇
  2022年   27篇
  2021年   24篇
  2020年   29篇
  2019年   38篇
  2018年   18篇
  2017年   21篇
  2016年   28篇
  2015年   24篇
  2014年   20篇
  2013年   23篇
  2012年   35篇
  2011年   30篇
  2010年   24篇
  2009年   18篇
  2008年   17篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2001年   3篇
  1998年   1篇
  1994年   2篇
  1990年   1篇
排序方式: 共有420条查询结果,搜索用时 593 毫秒
41.
Utilization of solar energy is of great interest for a sustainable society, and its conversion into electricity in a compact battery is challenging. Herein, a zinc–air battery with the polymer semiconductor polytrithiophene (pTTh) as the cathode is reported for direct conversion of photoenergy into electric energy. Upon irradiation, photoelectrons are generated in the conduction band (CB) of pTTh and then injected into the π2p* orbitals of O2 for its reduction to HO2?, which is disproportionated to OH? and drives the oxidation of Zn to ZnO at the anode. The discharge voltage was significantly increased to 1.78 V without decay during discharge–charge cycles over 64 h, which corresponds to an energy density increase of 29.0 % as compared to 1.38 V for a zinc–air battery with state‐of‐the‐art Pt/C. The zinc–air battery with an intrinsically different reaction scheme for simultaneous conversion of chemical and photoenergy into electric energy opens a new pathway for utilization of solar energy.  相似文献   
42.
Promoting electron mobility is the key to designing high performance electron transport materials(ETMs). Formation of intermolecular interaction can be helpful to enhance their electron mobilities as a result of more ordered molecular stacking.Here, to reveal the inherent influence of intermolecular π-π stacking on the electron mobilities, we designed two ETMs, namely,2,4-diphenyl-6-[3-(2-triphenylenyl)phenyl]-1,3,5-triazine(TPTRZ) and 2,4-diphenyl-6-[4′-(2-triphenylenyl)[1,1′-biphenyl]-3-yl]-1,3,5-triazine(TPPTRZ). Thermal, photophysical and electrochemical measurement results indicate they are good ETM candidates. Additionally, TPTRZ and TPPTRZ exhibit high electron mobilities of 3.60×10~(-5) and 3.58×10~(-5) cm~2V-1 s~(-1), respectively, at an electric field of 7×10~5 V cm~(-1). By taking X-ray single crystal structure, theoretical calculation and time of flight(TOF) results into consideration, it is revealed that strong intermolecular π-π stacking induced by planar triphenylene and triphenyltriazine units renders TPTRZ and TPPTRZ small energetic and positional disorder parameters, and results in their high electron mobilities thereby. By further enhancing intermolecular π-π stacking, ETMs with even higher electron mobilities can thus be anticipated.  相似文献   
43.
多孔液体(Porous Liquids, PLs)是一类结合了多孔固体永久性孔隙与液态流动性优势的新材料. 自2007年, PLs的概念被首次提出以来, 其在合成策略与应用领域方面均取得了较大的突破. 然而, 传统的PLs因高黏度、高密度、高熔点与高原材料成本等缺陷极大程度制约了其在流动工业系统中的大规模应用. 因此, 迫切需要寻求理想的位阻溶剂用于制备先进的多孔液体. 离子液体(Ionic Liquids, ILs)因独特的可调节物理特性、非挥发性、高稳定性、易获得、经济性高、低再生能耗等特性, 使其成为构筑PLs中最具有应用前景的理想溶剂之一. 在过去的5年间, 基于多种ILs与先进多孔固体(如有机笼、金属有机框架、中空碳、沸石、多孔聚合物等)制备的多孔离子液体(Porous Ionic Liquids, PILs)被陆续报道. PILs独特的永久性孔隙、无溶剂挥发、再生能力强、黏度可调、低熔点、高稳定性等特性加快了其在气体吸附、分离、催化、萃取、分子分离等领域的快速发展. 本综述围绕PILs的构筑策略、特性、应用领域等阐述了其研究进展. 最后, 对PILs在制备中存在的挑战与未来的研究方向进行了归纳与展望.  相似文献   
44.
45.
46.
Photosensitive supramolecular peptide hydrogels with the gelators forming by the integration of photosensitive moieties and peptides have been briefly summarized the hydrogelation capabilities, the expressing manner serving as smart materials, and practical applications.  相似文献   
47.
To investigate the influencing factors and the kinetics of photocatalytic degradation of phenol, experiments were carried out using conjugated polymer poly(fluorene-co-thiophene) (PFT) sensitized TiO2 and ZnO under LED (light-emitting diode) lights of the wavelength of 450–475 nm. Influencing factors, such as initial phenol concentration, photocatalyst dosage and pH value on the photocatalytic degradation of phenol were studied in detail. The reaction kinetics was found to follow pseudo first-order law.  相似文献   
48.
Synthesis of cyclohexanone oxime via the cyclohexanone-hydroxylamine process is widespread in the caprolactam industry, which is an upstream industry for nylon-6 production. However, there are two shortcomings in this process, harsh reaction conditions and the potential danger posed by explosive hydroxylamine. In this study, we presented a direct electrosynthesis of cyclohexanone oxime using nitrogen oxides and cyclohexanone, which eliminated the usage of hydroxylamine and demonstrated a green production of caprolactam. With the Fe electrocatalysts, a production rate of 55.9 g h−1 gcat−1 can be achieved in a flow cell with almost 100 % yield of cyclohexanone oxime. The high efficiency was attributed to their ability of accumulating adsorbed hydroxylamine and cyclohexanone. This study provides a theoretical basis for electrocatalyst design for C−N coupling reactions and illuminates the tantalizing possibility to upgrade the caprolactam industry towards safety and sustainability.  相似文献   
49.
An unprecedented Pd-catalyzed fluorinative bifunctionalization of aziridines and azetidines was successfully developed via regioselective C−C and C−F bond cleavage of gem-difluorocyclopropanes, leading to various β,β′-bisfluorinated amines and β,γ-bisfluorinated amines. This reaction was achieved by incorporating a 2-fluorinated allyl group and a fluorine atom scissored from gem-difluorocyclopropane in 100 % atom economy for the first time. The mechanistic investigations indicated that the reaction underwent amine attacking 2-fluorinated allyl palladium complex to generate η2-coordinated N-allyl aziridine followed by fluoride ligand transfer affording the final β- and γ-fluorinated amines.  相似文献   
50.
Multilayer films containing microgels of chemically cross-linked poly(allylamine hydrochloride) (PAH) and dextran (named PAH-D) were fabricated by layer-by-layer deposition of PAH-D and poly(styrene sulfonate) (PSS). The successful fabrication of PAH-D/PSS multilayer films was verified by quartz crystal microbalance measurements and cross-sectional scanning electron microscopy. The as-prepared PAH-D/PSS multilayer films can reversibly load and release negatively charged dyes such as methyl orange (MO) and fluorescein sodium and mercaptoacetic acid-stabilized CdTe nanoparticles. The loading capacity of the film for MO can be as large as approximately 3.0 microg/cm2 per bilayer, which corresponds to a MO density of 0.75 g/cm3 in the film. The high loading capacity of the PAH-D/PSS films originates from the cross-linked film structure with sufficient binding groups of protonated amine groups, as well as their high swelling capability by solvent. The loaded material can be released slowly when immersing the films in 0.9% normal saline. Meanwhile, the PAH-D/PSS multilayer films could deposit directly on either hydrophilic or hydrophobic substrates such as quartz, polytetrafluoroethylene, polystyrene, poly(ethylene terephthalate), and polypropylene. The microgel films of PAH-D/PSS are expected to be widely useful as matrixes for loading functional guest materials and even for controlled release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号