首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1614篇
  免费   48篇
  国内免费   3篇
化学   1123篇
晶体学   9篇
力学   54篇
数学   283篇
物理学   196篇
  2023年   8篇
  2022年   12篇
  2021年   20篇
  2020年   21篇
  2019年   15篇
  2018年   17篇
  2017年   15篇
  2016年   34篇
  2015年   37篇
  2014年   42篇
  2013年   82篇
  2012年   127篇
  2011年   113篇
  2010年   89篇
  2009年   84篇
  2008年   106篇
  2007年   113篇
  2006年   96篇
  2005年   90篇
  2004年   81篇
  2003年   59篇
  2002年   65篇
  2001年   22篇
  2000年   22篇
  1999年   19篇
  1998年   17篇
  1997年   17篇
  1996年   10篇
  1995年   7篇
  1994年   27篇
  1993年   15篇
  1992年   7篇
  1991年   11篇
  1990年   10篇
  1989年   11篇
  1987年   6篇
  1986年   12篇
  1985年   12篇
  1984年   14篇
  1983年   5篇
  1982年   12篇
  1981年   9篇
  1980年   9篇
  1979年   9篇
  1978年   11篇
  1977年   6篇
  1976年   6篇
  1975年   7篇
  1974年   7篇
  1972年   6篇
排序方式: 共有1665条查询结果,搜索用时 71 毫秒
91.
92.
The toxic bicyclic octapeptide α‐amanitin is mostly found in different species of the mushroom genus Amanita, with the death cap (Amanita phalloides) as one of the most prominent members. Due to its high selective inhibition of RNA polymerase II, which is directly linked to its high toxicity, particularly to hepatocytes, α‐amanitin received an increased attention as a toxin‐component of antibody‐drug conjugates (ADC) in cancer research. Furthermore, the isolation of α‐amanitin from mushrooms as the sole source severely restricts compound supply as well as further investigations, as structure–activity relationship (SAR) studies. Based on a straightforward access to the non‐proteinogenic amino acid dihydroxyisoleucine, we herein present a robust total synthesis of α‐amanitin providing options for production at larger scale as well as future structural diversifications.  相似文献   
93.
A key issue of micro/nano devices is how to integrate micro/nanostructures with specified chemical components onto various curved surfaces. Hydrodynamic printing of micro/nanostructures on three‐dimensional curved surfaces is achieved with a strategy that combines template‐induced hydrodynamic printing and self‐assembly of nanoparticles (NPs). Non‐lithography flexible wall‐shaped templates are replicated with microscale features by dicing a trench‐shaped silicon wafer. Arising from the capillary pumped function between the template and curved substrates, NPs in the colloidal suspension self‐assemble into close‐packed micro/nanostructures without a gravity effect. Theoretical analysis with the lattice Boltzmann model reveals the fundamental principles of the hydrodynamic assembly process. Spiral linear structures achieved by two kinds of fluorescent NPs show non‐interfering photoluminescence properties, while the waveguide and photoluminescence are confirmed in 3D curved space. The printed multiconstituent micro/nanostructures with single‐NP resolution may serve as a general platform for optoelectronics beyond flat surfaces.  相似文献   
94.
95.
The effects of hydrostatic (HHP) and dynamic (HPH) high-pressure treatments on the activity of pectin methylesterase (PME) and polyphenol oxidase (PPO) as well as the physicochemical quality attributes of ‘Ataulfo’ mango nectar were assessed. HHP reduced PME relative activity by 28% at 100 MPa for 5 min but increased PPO activity almost five-fold. Contrarily, HPH did not affect PME activity, but PPO was effectively reduced to 10% of residual activity at 300 MPa and at three passes. Color parameters (CIEL*a*b*), °hue, and chroma were differently affected by each type of high-pressure processing technology. The viscosity and fluid behavior were not affected by HHP, however, HPH changed the apparent viscosity at low dynamic pressure levels (100 MPa with one and three passes). The viscosity decreased at high shear rates in nectar samples, showing a shear-thinning effect. The results highlight how different effects can be achieved with each high-pressure technology; thus, selecting the most appropriate system for processing and preserving liquid foods like fruit beverages is recommended.  相似文献   
96.
97.
A key issue of micro/nano devices is how to integrate micro/nanostructures with specified chemical components onto various curved surfaces. Hydrodynamic printing of micro/nanostructures on three-dimensional curved surfaces is achieved with a strategy that combines template-induced hydrodynamic printing and self-assembly of nanoparticles (NPs). Non-lithography flexible wall-shaped templates are replicated with microscale features by dicing a trench-shaped silicon wafer. Arising from the capillary pumped function between the template and curved substrates, NPs in the colloidal suspension self-assemble into close-packed micro/nanostructures without a gravity effect. Theoretical analysis with the lattice Boltzmann model reveals the fundamental principles of the hydrodynamic assembly process. Spiral linear structures achieved by two kinds of fluorescent NPs show non-interfering photoluminescence properties, while the waveguide and photoluminescence are confirmed in 3D curved space. The printed multiconstituent micro/nanostructures with single-NP resolution may serve as a general platform for optoelectronics beyond flat surfaces.  相似文献   
98.
Non-metal nitrides are an exciting field of chemistry, featuring a significant number of compounds that can possess outstanding material properties. These properties mainly rely on maximizing the number of strong covalent bonds, with crosslinked XN6 octahedra frameworks being particularly attractive. In this study, the phosphorus–nitrogen system was studied up to 137 GPa in laser-heated diamond anvil cells, and three previously unobserved phases were synthesized and characterized by single-crystal X-ray diffraction, Raman spectroscopy measurements and density functional theory calculations. δ-P3N5 and PN2 were found to form at 72 and 134 GPa, respectively, and both feature dense 3D networks of the so far elusive PN6 units. The two compounds are ultra-incompressible, having a bulk modulus of K0=322 GPa for δ-P3N5 and 339 GPa for PN2. Upon decompression below 7 GPa, δ-P3N5 undergoes a transformation into a novel α′-P3N5 solid, stable at ambient conditions, that has a unique structure type based on PN4 tetrahedra. The formation of α′-P3N5 underlines that a phase space otherwise inaccessible can be explored through materials formed under high pressure.  相似文献   
99.
100.
This paper presents a finite element algorithm for the simulation of thermo‐hydrodynamic instabilities causing manufacturing defects in injection molding of plastic and metal powder. Mold‐filling parameters determine the flow pattern during filling, which in turn influences the quality of the final part. Insufficiently, well‐controlled operating conditions may generate inhomogeneities, empty spaces or unusable parts. An understanding of the flow behavior will enable manufacturers to reduce or even eliminate defects and improve their competitiveness. This work presents a rigorous study using numerical simulation and sensitivity analysis. The problem is modeled by the Navier–Stokes equations, the energy equation and a generalized Newtonian viscosity model. The solution algorithm is applied to a simple flow in a symmetrical gate geometry. This problem exhibits both symmetrical and non‐symmetrical solutions depending on the values taken by flow parameters. Under particular combinations of operating conditions, the flow was stable and symmetric, while some other combinations leading to large thermally induced viscosity gradients produce unstable and asymmetric flow. Based on the numerical results, a stability chart of the flow was established, identifying the boundaries between regions of stable and unstable flow in terms of the Graetz number (ratio of thermal conduction time to the convection time scale) and B, a dimensionless ratio indicating the sensitivity of viscosity to temperature changes. Sensitivities with respect to flow parameters are then computed using the continuous sensitivity equations method. We demonstrate that sensitivities are able to detect the transition between the stable and unstable flow regimes and correctly indicate how parameters should change in order to increase the stability of the flow. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号