首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   839篇
  免费   37篇
  国内免费   8篇
化学   521篇
晶体学   5篇
力学   12篇
数学   151篇
物理学   195篇
  2023年   3篇
  2022年   6篇
  2021年   10篇
  2020年   20篇
  2019年   18篇
  2018年   18篇
  2017年   14篇
  2016年   25篇
  2015年   23篇
  2014年   26篇
  2013年   47篇
  2012年   57篇
  2011年   82篇
  2010年   45篇
  2009年   30篇
  2008年   48篇
  2007年   55篇
  2006年   78篇
  2005年   57篇
  2004年   67篇
  2003年   51篇
  2002年   27篇
  2001年   13篇
  2000年   5篇
  1999年   9篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1971年   1篇
排序方式: 共有884条查询结果,搜索用时 31 毫秒
11.
Grignard reactions with alkoxysilanes or carbonyl compounds produce alkoxymagnesium halides as by-products. Kinetic measurements for reactions of silanes and of a ketone were performed with Grignard reagents, enriched in alkoxymagnesium halides and taken in a great excess.The alkoxide-type reaction products complex tightly with Grignard reagents and enhance in this way their nucleophilicity, thus accelerating the reaction. However, alkoxides branched at α-C atom exert an unfavorable steric hindrance to reaction resulting in a decrease in the reaction rate.  相似文献   
12.
Insulating tubular BN sheathing on semiconducting nanowires   总被引:1,自引:0,他引:1  
An effective method was developed for generation of insulating tubular boron nitride (BN)-sheathed nanostructures. ZnS nanowires and multilayered Si-SiO2 nanowires were successfully sheathed with insulating tubular BN-forming nanocables. Both the semiconductor nanowire cores and the BN sheaths are crystalline with well-uniform morphologies.  相似文献   
13.
Kinetics of the reactions of butylmagnesium chloride and phenylmagnesium bromide with tetraethoxysilane and methyltrichlorosilane was investigated in diethyl ether and diethyl ether-toluene mixtures. Replacement of ether by toluene significantly accelerates the reaction with alkoxysilanes, while no effect was found for the reaction with chlorosilanes. We established that the reaction with alkoxysilanes consists of replacement of a donor molecule at the magnesium center by the silane followed by subsequent rearrangement of the complex to products through a four-center transition state. Chlorosilanes react differently without solvent molecule replacement but also via a four-center transition state. Large negative activation entropies are consistent with formation of cyclic transition states. Small activation enthalpy values together with remarkable exothermicity point to early transition states of the reactions.  相似文献   
14.
The syntheses of 3,4- and 4,5-diiodophthalonitriles are described. Coupling of the latter compound with Pd(PPh(3))(2)Cl(2) and 1-octyne, 1-heptyne, 1-hexyne, 1-pentyne, and 3,3-dimethyl-1-butyne gave a series of 4,5-dialkynylphthalonitriles. Hydrogenation of 4,5-bis(1-pentynyl)phthalonitrile and 4,5-bis(3,3-dimethyl-1-butynyl)phthalonitrile gave 4,5-dipentylphthalonitrile and 4,5-bis(3,3-dimethylbutyl)phthalonitriles. Condensation of the dialkynylphthalonitriles with lithium 1-pentoxide in 1-pentanol gave 2,3,9,10,16,17,23,24-octaalkynylphthalocyanines, while intervention of the intermediate dilithium phthalocyanines with zinc acetate gave the related zinc(II) phthalocyanines. (1)H NMR spectroscopy of these octaalkynylphthalocyanines exhibited large chemical shifts (1-2 ppm) of the internal and aromatic protons at concentrations ranging from 10(-)(2) to 10(-)(5) M and at temperatures from 27 to 147 degrees C. The effects of aggregation phenomena are discussed. The importance of reporting concentration and temperature values for NMR spectra of phthalocyanines is stressed.  相似文献   
15.
Functionality-enhanced nanostructured matrices generated by intercalating polyoctadecylsiloxane (PODS) with octadecene (ODC) or octadecylamine (ODA) are employed as reaction media in which to grow Pt nanoparticles. Small-angle X-ray scattering (SAXS) signatures confirm that the amphiphilic PODS matrix orders into lamellae with a periodicity (d) of 5.24 nm, which corresponds to the siloxy bilayer and a double layer of alkyl tails. The regular packing of the hydrophobic tails becomes distorted upon introduction of ODC or ODA. Incorporation of K[(C2H4)PtCl3].H2O (a Zeise salt) into the PODS/ODC matrix, followed by reduction of the Pt ions by NaBH4 or H2, results in the localization of Pt compounds and nanoparticles along the siloxy bilayers, which remain dimensionally unchanged. Electron density profiles deduced from PODS/ODA, however, provide evidence for considerable structural reorganization upon metalation with H2PtCl6.6H2O. In this case, the siloxy bilayers broaden due to the presence of PtCl62- ions, and the hydrophobic layers become distorted due to the formation of (PtCl62-)(ODAH+)2 complexes. Subsequent reduction by NaBH4 restores the inherent PODS organization, while H2 reduction partially preserves the distorted matrix, indicating that some Pt nanoparticles form in close proximity to the siloxy bilayer. Transmission electron microscopy reveals that relatively monodisperse Pt nanoparticles measuring approximately 1 nm in diameter are located along the siloxy bilayers, whereas anomalous SAXS further indicates that nanoparticles form aggregates of comparable size to d within the PODS double layers.  相似文献   
16.
Catalyzed collapse and enhanced hydrogen storage of BN nanotubes   总被引:1,自引:0,他引:1  
The novel morphology of BN nanotubes with a collapsed structure has been discovered by a metal-catalyzed treatment. The collapse causes the dramatic enlargement of a specific surface area of BN nanotubes and remarkably enhances the hydrogen storage capacity of BN nanotubes.  相似文献   
17.
Abstract— The UV spectra of solid amorphous films of all-trans retinyl polyenes. i. e. retinyl acetate, retinyl palmitate, axerophtene and retinal, on supports are investigated. It is shown that in the absence of oxygen the spectra of the films do not change at room temperature; in the presence of O2 the fast oxidation of the polyenes occurs which in the case of retinol esters and axerophtene is accompanied by the shift of the absorption maxima to the shorter wavelengths. Consequently, the interpretation of blue shift of UV spectra of retinyl polyene films given by Hotchandani and Leblanc (1976) is incorrect. The formation of the only compound is shown to occur during the first stage of the oxidation of retinyl acetate and retinyl palmitate films. Proceeding from IR spectra of oxidized films the compound is assigned to the corresponding 11-cis isomer.  相似文献   
18.
The work is devoted to luminescent properties of trivalent lanthanide complexes dispersed in thermoplastic host matrices. Polyethylene films and polypropylene‐rods, both doped with these complexes, were manufactured using an extrusion technique. Two kinds of dopants were used: Eu(III)‐thenoyltrifluoroacetone‐1,10‐phenanthroline complex (1) and Eu(III)‐La(III)‐1,10‐phenanthroline complex (2). Absorption, excitation, emission spectra and lifetime of luminescence were studied. The impact of the polymer matrix on the emission spectra was investigated. Emission spectra of the films were studied at room and helium temperatures. Time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) surface mapping showed that in the Eu(III)‐La(III) complex europium forms islands (clusters) with a dimension of 1 µm, whereas lanthanum was dispersed more uniformly in the polymer matrix. Dependence of emission intensity on the excitation was determined. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
19.
Heterolanthanide complexes are difficult to synthesize owing to the similar chemistry of the lanthanide ions. Consequently, very few purely heterolanthanide complexes have been synthesized. This is despite the fact that such complexes hold interesting optical and magnetic properties. To fine-tune these properties, it is important that one can choose complexes with any given combination of lanthanides. Herein we report a synthetic procedure which yields pure heterodinuclear lanthanide cryptates LnLn*LX3 (X = NO3 or OTf) based on the cryptand H3L = N[(CH2)2N Created by potrace 1.16, written by Peter Selinger 2001-2019 CH–R–CH Created by potrace 1.16, written by Peter Selinger 2001-2019 N–(CH2)2]3N (R = m-C6H2OH-2-Me-5). In the synthesis the choice of counter ion and solvent proves crucial in controlling the Ln–Ln* composition. Choosing the optimal solvent and counter ion afford pure heterodinuclear complexes with any given combination of Gd(iii)–Lu(iii) including Y(iii). To demonstrate the versatility of the synthesis all dinuclear combinations of Y(iii), Gd(iii), Yb(iii) and Lu(iii) were synthesized resulting in 10 novel complexes of the form LnLn*L(OTf)3 with LnLn* = YbGd 1, YbY 2, YbLu 3, YbYb 4, LuGd 5, LuY 6, LuLu 7, YGd 8, YY 9 and GdGd 10. Through the use of 1H, 13C NMR and mass spectrometry the heterodinuclear nature of YbGd, YbY, YbLu, LuGd, LuY and YGd was confirmed. Crystal structures of LnLn*L(NO3)3 reveal short Ln–Ln distances of ∼3.5 Å. Using SQUID magnetometry the exchange coupling between the lanthanide ions was found to be anti-ferromagnetic for GdGd and YbYb while ferromagnetic for YbGd.

We present a synthetic strategy to prepare the first heterodinuclear lanthanide(iii) cryptate complexes. The cryptate design ensures that the complexes are stable in solution for days. The exchange coupling in YbYb, GdGd and YbGd is investigated.  相似文献   
20.
The observed resonance energy transfer in nanoassemblies of CdSe/ZnS quantum dots and pyridyl-substituted free-base porphyrin molecules [Zenkevich et al., J. Phys. Chem. B 109 (2005) 8679] is studied computationally by ab initio electronic structure and quantum dynamics approaches. The system harvests light in a broad energy range and can transfer the excitation from the dot through the porphyrin to oxygen, generating singlet oxygen for medical applications. The geometric structure, electronic energies, and transition dipole moments are derived by density functional theory and are utilized for calculating the Förster coupling between the excitons residing on the quantum dot and the porphyrin. The direction and rate of the irreversible exciton transfer is determined by the initial photoexcitation of the dot, the dot–porphyrin coupling and the interaction to the electronic subsystem with the vibrational environment. The simulated electronic structure and dynamics are in good agreement with the experimental data and provide real-time atomistic details of the energy transfer mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号