首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2330篇
  免费   384篇
  国内免费   265篇
化学   1547篇
晶体学   30篇
力学   217篇
综合类   10篇
数学   349篇
物理学   826篇
  2024年   12篇
  2023年   47篇
  2022年   92篇
  2021年   98篇
  2020年   106篇
  2019年   74篇
  2018年   91篇
  2017年   81篇
  2016年   111篇
  2015年   137篇
  2014年   139篇
  2013年   189篇
  2012年   192篇
  2011年   194篇
  2010年   150篇
  2009年   122篇
  2008年   125篇
  2007年   120篇
  2006年   116篇
  2005年   86篇
  2004年   74篇
  2003年   60篇
  2002年   83篇
  2001年   68篇
  2000年   54篇
  1999年   55篇
  1998年   48篇
  1997年   37篇
  1996年   45篇
  1995年   24篇
  1994年   22篇
  1993年   21篇
  1992年   21篇
  1991年   19篇
  1990年   14篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   6篇
  1985年   7篇
  1984年   8篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1974年   2篇
  1973年   2篇
  1964年   1篇
  1957年   1篇
  1936年   1篇
排序方式: 共有2979条查询结果,搜索用时 0 毫秒
11.
Long X  Miao Q  Bi S  Li D  Zhang C  Zhao H 《Talanta》2004,64(2):366-372
In weakly acidic buffer medium, the interaction of amikacin with calf thymus DNA, yeast RNA and denatured DNA has been investigated by using resonance Rayleigh scattering (RRS) technique. The result shows that calf thymus DNA is capable of enhancing the RRS intensity of the amikacin, while yeast RNA and denatured DNA have very little enhancement effect. Based on the characteristics, a sensitive assay for detecting double-stranded DNA in the presence of denatured DNA and yeast RNA has been developed. The enhancement of the RRS signal is directly proportional to the concentration of double-stranded DNA in the range 0.02-12.0 μg ml−1 for calf thymus DNA and its detection limit (3σ) is 2.5 ng ml−1. The method shows a wide linear range and high sensitivity, and almost no interference can be observed from RNA, denatured DNA, amino acid and most of the metal ions. The trace amounts of nucleic acid in synthetic samples and practical samples are determined with satisfactory results. Therefore, the proposed method is promising for as an effect means for recognition in vivo and determination in situ of double-stranded DNA.  相似文献   
12.
A new series of thiophene‐ and furan‐containing chromophores with a chiral prolinol donor and a sulfone acceptor has been synthesized. The UV‐vis absorptions, second‐order nonlinear optical properties, and X‐ray crystal structures are described.  相似文献   
13.
有机分子与聚电解质静电吸附成膜特性研究   总被引:1,自引:0,他引:1  
选取多种有机分子及聚电解质,采用静电吸附自组装法制备了聚电解质,聚电解质、聚电解质,有机分子、有机分子,有机分子的复合薄膜,讨论了这些体系的静电吸附成膜特性及其成膜机理.  相似文献   
14.
Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies. In this study, we examine the impact of O-glycosylation on the binding selectivity of a model Family 1 carbohydrate-binding module (CBM), which has been shown to be one of the primary sub-domains responsible for non-productive lignin binding in multi-modular cellulases. Specifically, we examine the relationship between glycan structure and the binding specificity of the CBM to cellulose and lignin substrates. We find that the glycosylation pattern of the CBM exhibits a strong influence on the binding affinity and the selectivity between both cellulose and lignin. In addition, the large set of binding data collected allows us to examine the relationship between binding affinity and the correlation in motion between pairs of glycosylation sites. Our results suggest that glycoforms displaying highly correlated motion in their glycosylation sites tend to bind cellulose with high affinity and lignin with low affinity. Taken together, this work helps lay the groundwork for future exploitation of glycoengineering as a tool to improve the performance of industrial enzymes.

Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies.

The cell walls of terrestrial plants primarily comprise the polysaccharides cellulose, hemicellulose, and pectin, as well as the heterogeneous aromatic polymer, lignin. In nature, carbohydrates derived from plant polysaccharides provide a massive carbon and energy source for biomass-degrading fungi, bacteria, and archaea, which together are the primary organisms that recycle plant matter and are a critical component of the global carbon cycle. Across the various environments in which these microbes break down lignocellulose, a few known enzymatic and chemical systems have evolved to deconstruct polysaccharides to soluble sugars.1–6 These natural systems are, in several cases, being evaluated for industrial use to produce sugars for further conversion into renewable biofuels and chemicals.From an industrial perspective, overcoming biomass recalcitrance to cost-effectively produce soluble intermediates, including sugars for further upgrading remains the main challenge in biomass conversion. Lignin, the evolution of which in planta provided a significant advantage for terrestrial plants to mitigate microbial attack, is now widely recognized as a primary cause of biomass recalcitrance.7 Chemical and/or biological processing scenarios of lignocellulose have been evaluated8 and several approaches have been scaled to industrial biorefineries to date. Many biomass conversion technologies overcome recalcitrance by partially or wholly removing lignin from biomass using thermochemical pretreatment or fractionation. This approach enables easier polysaccharide access for carbohydrate-active enzymes and/or microbes. There are however, several biomass deconstruction approaches that employ enzymes or microbes with whole, unpretreated biomass.9,10 In most realistic biomass conversion scenarios wherein enzymes or microbes are used to depolymerize polysaccharides, native or residual lignin remains.11,12 It is important to note that lignin can bind and sequester carbohydrate-active enzymes, which in turn can affect conversion performance.13Therefore, efforts aimed at improving cellulose binding selectivity relative to lignin have emerged as major thrusts in cellulase studies.14–25 Multiple reports in the past a few years have made exciting new contributions to our collective understanding of how fungal glycoside hydrolases, which are among the most well-characterized cellulolytic enzymes given their importance to cellulosic biofuels production, bind to lignin from various pretreatments.15,17 Taken together, these studies have demonstrated that the Family 1 carbohydrate-binding modules (CBMs) often found in fungal cellulases are the most relevant sub-domains for non-productive binding to lignin,15,17,20,26 likely due to the hydrophobic face of these CBMs that is known to be also responsible for cellulose binding (Fig. 1).27Open in a separate windowFig. 1Model of glycosylated CBM binding the surface of a cellulose crystal. Glycans are shown in green with oxygen atoms in red, tyrosines known to be critical to binding shown in purple, and disulfide bonds Cys8–Cys25 and Cys19–Cys35 in yellow.Furthermore, several studies have been published recently using protein engineering of Family 1 CBMs to improve CBM binding selectivity to cellulose with respect to lignin. Of particular note, Strobel et al. screened a large library of point mutations in both the Family 1 CBM and the linker connecting the catalytic domain (CD) and CBM.21,22 These studies demonstrated that several mutations in the CBM and one in the linker led to improved cellulose binding selectivity compared to lignin. The emerging picture is that the CBM-cellulose interaction, which occurs mainly as a result of stacking between the flat, hydrophobic CBM face (which is decorated with aromatic residues) and the hydrophobic crystal face of cellulose I, is also likely the main driving force in the CBM-lignin interaction given the strong potential for aromatic–aromatic and hydrophobic interactions.Alongside amino acid changes, modification of O-glycosylation has recently emerged as a potential tool in engineering fungal CBMs, which Harrison et al. demonstrated to be O-glycosylated.28–31 In particular, we have revealed that the O-mannosylation of a Family 1 CBM of Trichoderma reesei cellobiohydrolase I (TrCel7A) can lead to significant enhancements in the binding affinity towards bacterial microcrystalline cellulose (BMCC).30,32,33 This observation, together with the fact that glycans have the potential to form both hydrophilic and hydrophobic interactions with other molecules, led us to hypothesize that glycosylation may have a unique role in the binding selectivity of Family 1 CBMs to cellulose relative to lignin and as such, glycoengineering may be exploited to improve the industrial performance of these enzymes. To test this hypothesis, in the present study, we systematically probed the effects of glycosylation on CBM binding affinity for a variety of lignocellulose-derived cellulose and lignin substrates and investigated routes to computationally predict the binding properties of different glycosylated CBMs.  相似文献   
15.
16.
Liao W  Shang Q  Yu G  Li D 《Talanta》2002,57(6):6184-1092
Phase behavior of the extraction system, Cyanex 923–heptane/H2SO4–H2O has been studied. The third phase appeared at different aqueous H2SO4 concentration with varying initial Cyanex 923 concentration and temperature affects its appearance. Almost all of H2SO4 and H2O are extracted into the middle phase. The H2SO4 concentration in the third phase increases with the increasing aqueous acid concentration (CH2SO4,b) while the water content first increases and then reaches a constant value at CH2SO4,b=11.3 mol l−1. In the region of CH2SO4,b higher than 5.2 mol l−1, the composition of the middle phase is only related to the equilibrium concentration of H2SO4 in the bottom phase. H2SO4 and H2O are transferred into the middle phase mainly by their coordination with Cyanex 923 when CH2SO4,b is less than 11.3 mol l−1. When CH2SO4,b is higher than 11.3 mol l−1, excess H2SO4 is solubilized into the polar layer of the aggregates. In the region considered, the extracted complex changes from C923 · H2SO4 to C923 · H2SO4 · H2O and then to C923 · (H2SO4)2 · H2O.  相似文献   
17.
Thin PVA/cobalt acetate composite fibers were prepared by using sol-gel processing and electrospinning technique.After calcination of the above precursor fibers,Co3O4 nanofibers with a diameter of 50-150 nm could be successfully obtained.The fibers were characterized by SEM,FT-IR,WAXD,respectively.  相似文献   
18.
Shang  Ao  Luo  Siwei  Zhang  Jianquan  Zhao  Heng  Xia  Xinxin  Pan  Mingao  Li  Chao  Chen  Yuzhong  Yi  Jicheng  Lu  Xinhui  Ma  Wei  Yan  He  Hu  Huawei 《中国科学:化学(英文版)》2022,65(9):1758-1766

Side-chain engineering has been demonstrated as an effective method for fine-tuning the optical, electrical, and morphological properties of organic semiconductors toward efficient organic solar cells (OSCs). In this work, three isomeric non-fullerene small molecule acceptors (SMAs), named BTP-4F-T2C8, BTP-4F-T2EH and BTP-4F-T3EH, with linear and branched alkyl chains substituted on the α or β positions of thiophene as the side chains, were synthesized and systematically investigated. The results demonstrate that the size and substitution position of alkyl side chains can greatly affect the electronic properties, molecular packing as well as crystallinity of the SMAs. After blending with donor polymer D18-Cl, the prominent device performance of 18.25% was achieved by the BTP-4F-T3EH-based solar cells, which is higher than those of the BTP-4F-T2EH-based (17.41%) and BTP-4F-T2C8-based (15.92%) ones. The enhanced performance of the BTP-4F-T3EH-based devices is attributed to its stronger crystallinity, higher electron mobility, suppressed biomolecular recombination, and the appropriate intermolecular interaction with the donor polymer. This work reveals that the side chain isomerization strategy can be a practical way in tuning the molecular packing and blend morphology for improving the performance of organic solar cells.

  相似文献   
19.
动态法测定耐硫甲烷化催化剂的有效导热系数   总被引:1,自引:2,他引:1  
本文采用动态法原理,用单丝直径为0.2mm的铜-录铜热偶作为测温元件,在313-533K温度区间,测定了耐硫甲烷化催化剂的有地热系数。用石蜡和锡作为参比物,对所用仪器及实验方法进行了可靠性检验。实验表明,动态法是测定多孔硫化物催化剂导热系数的有效方法。其精度符合工程要求,亦能用于其它材料导热系数的测定。对所测数据用单纯形方法优化拟合,得到大于353K范围内的有效导热系数的经验公式。  相似文献   
20.
The synthesis and anion binding properties of new ruthenium(II) and cobalt(II) phenanthroline complexes, containing two amide subunits are described. Evidence for anion binding in dimethyl sulfoxide (DMSO) solution was obtained from u.v.–vis titration experiments. Results indicated that these receptors showed strong affinity for F and AcO, and showed weak affinity for OH and H2PO 4 , and showed no affinity for Cl, Br, I. These receptors interacted with various anions examined through hydrogen-bond formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号